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Abstract
In reinforcement learning (RL) gradient based methods have shown to efficiently master many
games in a superhuman manner. New advances in meta learning aim to improve these playing
agents in terms of sample efficiency by introducing new methods of ’learning how to learn’.
They also try to enhance the adaptation capabilities of the agents to quickly changing and
diverse playing styles of their opponents. To study and evaluate these approaches, a diverse
set of agents is needed.

In this work hypernetworks will be evaluated as a method to create a diverse set of agents.
Hypernetworks are neural networks that generate weights for another neural network. They
can be used in a similar fashion as variational autoencoders (VAEs) or generative adversarial
networks (GANs) to generate a mapping from a low dimensional (random) input vector to high
dimensional weight space. The loss function of such a hypernetwork contains two properties:
accuracy and diversity. The latter is used to ensure that the network generates a distribution of
agents.

The approach is bench marked against individually trained agents as well as an evolution-
ary method, where the selection criterion consists also of both, an accuracy and a diversity
term. The different approaches are tested on an image classification task, a graph game and an
imperfect information card game.
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1 Introduction

In his talk ’Hypernetworks: a versatile and powerful tool’1 Prof. Wolf from the Tel Aviv Univer-
sity and Facebook AI Research stated that he thinks that the world is at the edge of a second
Cambrian explosion. This explosion refers to a process over 500 mio. years ago in which a lot
of the evolutionary steps, which shape our life nowadays, happened in a rather short period of
time. He believes that this is exactly what is going to happen in the next decades with AI.

One key aspect which has been boosting his research and might have led him to this state-
ment was the usage of hypernetworks: neural networks which generate the weights of other
neural networks. The name originates from a paper published in 2016 and since then many
researchers have used this approach in their research.

Another field with exploding novelty is reinforcement learning (RL). Media-effective events
like the Go tournament against the world champion Lee Sedol 2017 and the Dota2 tournament
against the world champion Team OG 2019 express the ongoing progress pushed by a growing
research community. Major players like Deepmind, OpenAI and Facebook AI together with
universities and other research organizations reach milestone after milestone.

Most of the basic ideas in RL like the Bellman equation have already been around for decades.
The breakthrough of these ideas in recent years is on one hand due to the huge increase in com-
putational power. On the other hand, main advances were possible because of the combination
of several existing ideas: The new combination of policy networks, value networks and monte
carlo tree search (MCTS) for example, led to the incredible success of AlphaGo [1] and MuZero
[2].

Another new combination of existing ideas is hypernetworks and RL. This combination
seems promising in the field of agent diversification. Hypernetworks could help finding agents
who not only reach optimal scores in the given task, but also find diverse ways to do so. Es-
pecially in tasks which require severe exploration [3] or require cooperative behavior between
multiple agents [4], exploring a diverse agent-space facilitates completion.

Furthermore, diverse sets of agents are also needed to evaluate recent advances in meta
learning. Meta learning, which can be thought of as a ’learning how to learn’, tries to improve
the sample efficiency as well as the the adaptation capabilities of current RL agents. In order
to develop agents capable of adapting quickly to changing playing styles with meta learning
approaches, a diverse set of agents is needed.

In order to explore this idea of combining hypernetworks with state of the art RL algorithms
to create diverse agents, several steps are conducted in this thesis. First, the overall capability
of a hypernetwork to establish diversity is analyzed by reproducing the work of Deutsch. In
his paper ’Generating neural networks with neural networks’[5] he showed that hypernetworks
are able to create diverse classifier networks for image classification. Second, this approach is

1 Find his talk at https://www.youtube.com/watch?v=KY9DoutzH6k
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transferred to RL. Criteria to measure and estimate diversity are explored and combined with
the created hypernetwork to solve a simple RL-task, namely a graph game. Third, the learned
insights of this experiment are used to solve a difficult RL-task: an imperfect information game.
In order to compare the diversity of the agents created by the hypernetwork they are bench-
marked against agents which are either individually trained with random weight initializations
or created by a evolutionary method, a genetic algorithm.

This thesis is therefore structured in four parts. In Chapter 2 the basic ideas utilized are
presented to give an overview of the research landscape in the respective fields. In Chapter 3 the
main ideas and concepts of the thesis are presented. The experiments to evaluate and analyze
these ideas are conducted in Chapter 4. Lastly, the main insights and findings are summarized
in Chapter 5 and suggestions for future research are outlined.



2 State of the Art
The following chapter is divided into four parts, providing basic information and examples
about the main concepts utilized in this thesis: reinforcement learning, hypernetworks, genetic
algorithms and diversity measurements.

2.1 Reinforcement Learning
In RL a so called agent interacts with an environment and receives some sort of reward depend-
ing on the taken actions. Many different algorithms have been introduced for such agents. An
overview by OpenAI [6] can be seen in 2.1.1

Figure 2.1: A taxonomy of algorithms in RL: most algorithms can be categorized by this tree
into model-free RL, which has been more popular among researchers, and model-
based RL

In this thesis two model-free algorithms are implemented. One from the field of Policy Opti-
mization, an advantage actor-critic (A2C), and one from Q-Learning, a Double Deep-Q-Network
(DDQN). These RL algorithms will interact with an environment in a discrete Markov decision
process (MDP) with a finite number of states and actions and bounded rewards.

The training of an agent generally starts with an initial state s0. A trajectory τ = (s0, a0, s1, a1, ...)

1 Find his figure at https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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4 Chapter 2. State of the Art

is created by picking actions at at time step t according to a policy πθ(at|st) and receiving states
by the environment according to the transition model st+1 ∼ P(st+1|st, at) until a terminal state
is reached [7]. For these actions and states a reward rt is received according to a reward func-
tion r(st, at, st+1). The goal of the agent is to maximize this cumulative reward R(τ ) = ∑T

t=0 rt
[8].

The form of the objective function to maximize the cumulative reward, differs between Q-
Learning and Policy Optimization algorithms. In the following the characteristics of the two RL
algorithms used in the thesis are introduced.

2.1.1 Double Deep-Q-Network

In Q-Learning, the objective function is an approximator Q(s, a) of the optimal state-action
value function Q∗(s, a) which is approximated via stochastic gradient descent [9]. As has been
shown above, the best action under a given policy is the one that maximizes the expected
return. This is called a greedy policy. In equation 2.1 it is shown that this function can be
estimated by the reward of the current time step, plus an estimation of the value of the next
time step, given a state st and action at. γ is a temporal discount factor.

Q∗(st, at) = Est+1∼P
[
r(st, at) + γ max

at+1

[Q∗(st+1, at+1)
∣∣st, at] (2.1)

The optimal policy is derived by simply selecting the highest value-action pair for each state.
The DDQN is a neural network which approximates these value-action pairs. It maps the
state space to the action space by training its parameters θ. To do so efficiently, two important
ingredients are added: a target network, which has the same architecture as the so called online
network, but has a different set of parameters θT and a replay buffer.

The problem of the standard DQN approach is that the same parameters are used to select
and to evaluate the action. This leads to the overestimation of the Q-values and to inaccuracies
during training [7]. To fix this issue, the DDQN approach estimates the value of the greedy pol-
icy with the online network with weights θ.The target network calculates the value estimation
with a second value function with a different set of weights θT. Therefore, the target becomes

yDDQN = r(st, at) + γQθT

(
st+1, argmax

at+1

Qθ(st+1, at+1

)
. (2.2)

Note that equation 2.2 is considered one-step Q-learning, since it only takes the following
time step t+ 1 into account. The estimated value of an action is determined by the reward at
the next time step and the estimated value of the best action times a discount factor γ, which
takes the temporal differences into account. Note that the value is calculated by the target
network, whereas the online action is selected by the online network. The loss function for the
DDQN then becomes

LDDQN(θ) = E
(
yDDQN −Qθ(st, at)

)2
. (2.3)

The weights of the target network θt are equated every n update steps to the weights of
the online network. n has to be chosen carefully since it highly influences the stability of the
DDQN. The same holds for the parameter γ.

Another method to boost performance is experience replay, where the transitions are sim-
ply saved in memory and from there randomly sampled for training. The training therefore

4



2.1. Reinforcement Learning 5

happens in an offline manner (off-policy).
In the beginning of training, exploration is important for the success of a RL algorithm. Since

the DDQN always selects the action with the maximal Q-value, a strategy has to be introduced
to ensure that, while the Q-values estimates are imprecise, the DDQN also explores new state-
action pairs. This can be achieved by a (linearly or exponentially) decreasing parameter ε ∈ 0, 1.
Instead of always taking the action with the highest Q-value, in the beginning of training the
agents take a random action with probability ε. This ensures exploration and is called an ε-
greedy policy.

The pseudo code of the DDQN used in this thesis can be seen below (Algorithm 1).

Algorithm 1 Double DQN [7]
Initialize online network Qθ , target network QθT and replay buffer D
for each iteration do

for each step in enviroment do
take st as input and select at ∼ πθ(at, st)
execute at and observe next state st+1 and reward rt
store trajectory {st, at, rt, st+1} → D

end for
for each update step do

sample τt = (st, at, rt, st+1) ∼ D
Compute target: yDDQN = rt + γQθT(st+1, argmaxat+1Qθ(st+1, at+1))
Perform gradient descent step on loss MSE(yDDQN,Qθ(st, at))

end for
Update target network parameters θT = θ every i’th iteration

end for

2.1.2 Actor-Critic

In policy optimization, the objective function maximizing the cumulative reward is

J(πθ) = Eτ∼πθ

[
R(τ )

]
. (2.4)

where πθ is the policy of the agent with parameters θ and τ are the transitions due to this
policy. The gradient can be approximated by sampling actions from πθ(at|st) [9, 10]. The
gradient of the objective function can be rewritten as

∇θJ(πθ) = Eτ∼πθ

[ T

∑
t=0

∇θlogπθ(at|st) ·At

]
. (2.5)

As can be seen in equation 2.5, the A2C consist of two parts: an advantage function At and
the policy function πθa(a|s). This is due to the structure of the overall algorithm. The value-
network Vπ

θc
(s) called the critic approximates the advantage function and a policy-network

called the actor approximates the policy function πθa(a|s) [10, 11]. θa and θc are the weights of
the networks. Note that these weights can be partially shared between the networks, but this
will not be considered in the following notation.

For a given time step t the action at is selected according to the policy network. For a given

5



6 Chapter 2. State of the Art

state it outputs a probability distribution over the action space and selects an action at by sam-
pling from this distribution.

The A2C is trained directly on the data from the played episode. It’s an on-policy method and
therefore, no replay buffer is needed. At each time step [t], the value of the state is estimated
by the critic . The value network estimates the reward received at the time step. The loss of the
critic can be written as

Lcritic = Est∼πθa

(
Vπ

θc
(st)− rt

)2
(2.6)

The loss of the actor is estimated by combining the log policy with the advantage function.
The advantage of a state is the received reward plus the expected reward at the next time
step minus the reward at the current time step. The expected reward of the next time step is
multiplied by a discount factor γ to prioritize immediate rewards (see equation 2.7).

At = rt + γVπ
θc
(st+1)−Vπ

θc
(st) (2.7)

Equivalent to equation 2.5 the loss of the actor is

Lactor = Est,at∼πθa

(
logπθa(at|st) ·At

)
+ δLentropy. (2.8)

To account for a better exploration, an entropy term Lentropyis added to the loss of the policy
network. The parameter δ ∈ {0, 1} is the entropy coefficient and decrease over the course of
training. The overall loss of the A2C is then simply the sum of the losses of the policy and value
network (see equation 2.9). The critic loss is multiplied by a factor a < 1 and is usually chosen
to be 0.5. The A2C can then be trained with this combined loss via gradient ascent.

LA2C = Lactor + a · Lcritic (2.9)

Algorithm 2 Actor Critic (PPO) [12]
Initialize policy parameters θa and θc
for for each iteration do

for each enviroment step do
collect set of trajectories D = {τi} by selecting at ∼ πθa(at, st)
→ {st, at, rt, st+1}

end for
for e in range epochs do

sample mini batch from D and calculate:
At = rt + γVπ

θc
(st+1)−Vπ

θc
(st)

pt = πθa(st)
Lcritic = (Vπ

θc
(st)− rt)2

Lpolicy = −log(pt(at))At

Ltotal = Lpolicy + Lvalue + Lentropy

Update policy and value network with gradient ascent
end for

end for

6



2.2. Hypernetworks 7

2.1.2.1 Proximal Policy Optimization

Because policy gradient methods tend to be unstable compared to Q-learning methods, prox-
imal policy optimization (PPO) was introduced [13]. The main idea behind PPO is gradient
clipping (see figure 2.2). The approach tries to prevent the size of gradient updates, which di-
verge from the previous gradient updates. This is supposed to make the learning more stable.

The main objective proposed is the following:

LCLIP(θ) = Etmin(rt(θ)At, clip(rt(θ), 1− ε, 1+ ε)At) (2.10)

where epsilon is a hyperparameter, normally ε = 0.2 [13]. Instead of multiplying the log of
the policy πθ(at|st) with the advantage function, the ratio between the current policy and the
old policy is used (see equation 2.11).

rt(θ) =
πθ(at|st)

πθold(at|st)
(2.11)

The min-function indicates that either this ratio or a clipped value is used to estimate the loss.
A graphical interpretation of this approach can be seen in figure 2.2: The gradient is clipped
off for both positive and negative values of the advantage function, to prevent large gradient
steps in diverging directions.

The pseudo code of the A2C used in this thesis can be found in Algorithm 2.

Figure 2.2: The plots show the surrogate function of LCLIP as a function of the ratio r for pos-
itive advantages (left) and negative advantages (right). The red circle indicates the
starting point of the optimization.[13]

2.2 Hypernetworks
The name hypernetwork originates from the eponymous paper ’Hypernetworks’ by Ha et al.
and initially described an approach using a smaller network to generate the weights of a larger
network [14, 15]. The weight generating network is referred to as hypernetwork, whereas the
other network is called main network.

Since then, many different applications of such hypernetworks have been introduced. There-
fore, the initial typification in small and large network is obsolete because hypernetworks now
come in almost any size and shape. Without claiming generality and albeit different classifica-
tions are possible, three main trends can be identified.

7



8 Chapter 2. State of the Art

1. Hypernetworks can take additional information about the task as inputs and modify the
weights of the main network directly instead of transforming its output. By doing so they are
able to solve problems more efficiently. The hypernetwork serves in this case as an auxiliary
network. Since this approach will not be used in this thesis but still offers some insights into
the overall functioning of hypernetworks, some examples will be briefly described below.

2. Instead of taking additional information about the task as inputs, hypernetworks can also
use a noise distribution as input to generate the weights of a main network. This is a generative
method similar to VAE’s and GAN’s and will be elaborated below.

3. Hypernetworks can be used as a compression method for larger main networks. Instead
of having to save all parameters of a main network, a much shorter vector representation can be
used which can, when fed into a prior trained hypernetwork, reproduce the entire parameter
set of the main network. Since this approach can be considered to be a different field of research,
it won’t be treated in this thesis.

1. Examples: Using additional information

Meta Learning: In their paper Continual Learning with Hypernetworks, von Oswald et al. used
hypernetworks to tackle problems in the field of continual learning. If several tasks t are given
{(x(1), y(1)), ..., (x(t), y(t))} with input samples x(t) and output samples y(t), a standard ap-
proach to train the model is to use data from all tasks. In real world application this isn’t always
possible due to catastrophic forgetting. An alternative approach is using a task-conditioned
hypernetwork. Such a hypernetwork h doesn’t have to retrain the information of the previous
tasks within its set of parameters, because it can map a task specific embedding et to a task
specific set of weights h(et) → θt of a main network. The embeddings are used to memorize
the tasks. Note that the task embedding et is a differentiable deterministic parameter and there-
fore can be learned just like the weights θt by minimizing the task specific loss L(t)

task. One key
challenge remaining is to determine which task shall be solved from a given input pattern, if
the task identity and therefore the embedding e is not ambiguous [16].

Figure 2.3: The pruning net (hypernetwork)
takes encoding vectors of the
main networks as input to gen-
erate the weights of the pruned
main networks.[17]

Meta Pruning: Another approach using net-
work encoding vectors as inputs for a hyper-
network is proposed by Zechun Liu et al. [17].
They used the hypernetwork for channel prun-
ing (pruning is an efficient method to compress
and accelerate neural networks). Doing prun-
ing manually was shown to be non-trivial, since
pruning one channel in one layer might influ-
ence the following layers significantly. The so-
called Meta Pruning approach proved to outper-
form uniform pruning baselines as well as other
state-of-the-art pruning methods. Instead of
modifying the main networks manually, hyper-
networks could solve the task more efficiently
by generating the pruned main networks di-

8



2.2. Hypernetworks 9

rectly. As can be seen in figure 2.3, the encoding vectors of the main network were used to
generate a pruned version of the networks.

Figure 2.4: The above networks are the pupil
network (above) and learnet (be-
low). The stars represent the lay-
ers of the networks and σ the ac-
tivation functions between them.
Γ represents the overall output.
[18]

One-Shot-Learners: Luca Bertinetto et al. used
a hypernetwork-main network approach (albeit
calling it a learnet and a pupil network) for one-
shot learning [18]. To create their learners they
reformulated the training problem. The task
was a simple image classification task, but in-
stead of simply predicting the labels of a given
picture with the conventional approach (which
isn’t sample efficient), they created input-triplets
(xi, zi, li) where xi was the picture to be pre-
dicted, zi an exemplar of a class of interest of
such pictures and li a modified label, which
would turn to one, if xi and zi belong to the same
class and negative otherwise. They then fed xi
to a pupil network (main network) and zi to the
learnet (hypernetwork). As can be seen in figure
2.4, the hypernetwork, which takes the class rep-
resentative zi as input, manipulates the weights
of the second layer of the main network as well
as the output of the network. The overall output Γ is the prediction of the label li of the image
xi. This approach managed to outperform other siamese architectures in the one-shot learning
scenario.

Figure 2.5: The sampling of the points which
are classified by the network g
can be seen (right) as well as the
target shape of an image, e.g. a
plane (left)

Meta Functionals: Wolf et al. show that hy-
pernetworks can be used to solve difficult tasks
by reformulating the initial problem. The given
problem in the paper ’Deep Meta Functionals for
Shape Representation’ is to reconstruct a 3D model
from a single image, for example a plane as can
be seen in figure 2.5. This task was reformulated
in a way that a hypernetwork could be used to
solve it. First, the hypernetwork f receives the
image as input and outputs the weights of the
main network (see 2.6). This main network is
therefore a function of the image. It serves as a
classifier which maps randomly sampled points
with coordinates (x,y,z) to values {0, 1}: 1 if the
point is within the 3D shape of the image and 0 if
its outside. The 3D shape of the image is thereby
defined by the classifiers decision boundary (see
figure 2.5). Wolf et al. also showed in other pub-
lications that a similar approach can be pursued
for a variety of difficult tasks such as electric circuit modeling [19] or color enhancement [20],

9



10 Chapter 2. State of the Art

which can be solved by converting the initial problem into a hypernetwork problem.

Figure 2.6: The hypernetwrok f takes an image as input and outputs the weights of the classifier
network g. This network takes coordinates as input and determines if they are inside
or outside the 3D-shape of the image.[21]

Hyperparameter Tuning: As a last use case it shall be mentioned that Jonathan Lorraine et al.
showed that instead of using cross-validation for hyperparameter tuning, hypernetworks can
be used to find the optimal hyperparameters of a main network [22]. Especially in the case of
tuning thousands of hyperparameters this approach proved to be efficient.

2. Examples: Generative methods

Generating Neural Networks with random input vectors: Because VAEs [23] and GANs [24] have
shown impressive results in generating samples from complex and high-dimensional distri-
butions, Deutsch proposed extending this idea to neural networks [5]. Considering that there
are no datasets of neural networks for each task, hypernetworks cannot be trained like the
before mentioned generative methods. An underlying probability distribution of neural net-
works does not exist. Thus, useful properties of such a distribution have to be chosen as a
selection criteria. Deutsch selected accuracy and diversity as criteria.The training objective of
the introduced hypernetwork is a compromise between these two criteria.

IfM(x; θ) : X× θ → Y is the main network, where X is the input and Y the output of the
network and θ the set of trainable weight vectors of the network, then the hypernetwork or
generater network can be written as G(z; ϕ) : Z× ϕ → θ, where Z is the input of the hypernet-
work and ϕ are the weights. z is drawn from a probability distribution pnoise and pdata(x, y) is
the data distribution of the given task.

The loss function of the main network can be written as LM(θ|pdata). Instead of training this
function directly, we can expand it to the loss of the hypernetwork LG(ϕ|pnoise,pdata) of the
combined networkM(x;G(z; ϕ)) which we train for the weights ϕ.

To take the previously mentioned two criteria into account, the loss function can be specified
to:

LG(ϕ|pnoise,pdata) = λLaccuracy(ϕ|pnoise, pdata) + Ldiversity(ϕ|pnoise). (2.12)

10



2.3. Evolutionary Methods 11

λ > 0 can be seen as a hyperparameter which balances the ratio between the two objectives
accuracy and diversity. The accuracy term can be calculated as:

Laccuracy(ϕ|pnoise,pdata) = Ez∼pnoiseLM(G(z; ϕ)|pdata). (2.13)

The diversity term is calculated through the entropy of the generated weights. But since an
increase in entropy does not always increase the diversity of the output, Deutsch takes sym-
metry transformations into account. These trivial symmetry transformations include any com-
position of the following three : Scaling, logits’ biases and permutations [5]. These symmetries
are considered by a process called gauge fixing. The overall diversity is then calculated by esti-
mating the overall entropy of the generated weights of a batch with the Kozachenko-Leonenko
estimator [25]. The diversity loss Ldiversity can be expressed as

Ldiversity(ϕ|pnoise) = −Hz pnoise [G(z; ϕ)]. (2.14)

With this approach Deutsch showed that the hypernetwork could not just learn the (locally)
optimal weights of one main network, but a distribution of network weights. With the diversity
term in the hypernetwork loss function, the created main network ensembles outperformed the
individual networks and generalized superiorly.

This is in line with the results of Timur Garipov et al., who analyzed the loss surface of a
classifier neural network and were able to show that local optima were connected via a low
loss path with high accuracy. They demonstrated that the overall ensemble performance of
randomly initialized networks was unmatched by other diversification methods [26]. Deutsch
concluded that such ensembles could potentially be created by hypernetworks, since they are
able to explore different modes of the loss surface.

2.3 Evolutionary Methods
The idea of evolutionary methods originates, just like the idea of neural networks, from nature.
The key aspects are mutation and/or random combination of DNA/genes and selection, the
survival of the fittest. The equivalent of DNA in the world of computer science, although not
exclusively, is the parameter space of neural networks. The equivalent of selection are bench-
mark tests which select the best individuals/networks within each generation with respect to
some predefined selection criteria [27].

In this scenario, the objective function of the RL problem (see equation 2.4) is considered
to be a blackbox function, taking θ ∈ Rd of a policy πθ as input and outputting R(τ). The
steps to train an evolutionary method like the genetic algorithm is, in its simplest form, as
follows: First, a population of networks N is initialized randomly. For each individual of the
population the performance in the given task is evaluated by some predefined measures. In a
RL task this is mostly the maximum score reached, but also other measures like the diversity of
a strategy can be incorporated in the evaluation. Due to this performance the best e individuals,
called the elite, are selected. The weights of the best individual are kept unchanged. The
weights of the other elites are permuted by randomly selecting one network of the elite and
adding Gaussian noise to it. The process of modifying the weights of the elites is repeated
until N-1 new networks have been created. This whole procedure is then repeated as a whole
for a predefined number of iterations (called generations) or until one of the networks or all
networks of the elite satisfy some final criteria. The pseudo code for a vanilla genetic algorithm

11



12 Chapter 2. State of the Art

can be found in Algorithm 3.

Algorithm 3 Genetic Algorithm [27]
Input: mutation function ψ, population size N, number of selected individuals T (elite size),
policy initialization routine φ, fitness function F
Draw Pi = φ(N (0, I)); i ∈ {1, ...,N}{initialize random DNN}
for g = 1,2, ... , G generations do

Evaluate Fi = F(Pg
i )

Sort Pg
i with descending order by Fi

select elite candidates Ci ← Pg
1...T

for i in range N-1 do
k = uniformRandom(1,T) {select individual from elite}
Pg+1

i = ψ(Cgk) {mutate and create new population for next generation}
end for
add C1 as true elite with out any permutations to Pg+1

end for

One main advantage of evolutionary methods is their broad applicability. Since neural net-
works are universal function approximators almost any problem with an existing benchmark
or score as a selection criteria can be dealt with. The downside of this method is that it can be
quite inefficient.

Evolutionary methods have recently been applied to the field of reinforcement learning [27]
and meta learning [28] and have proven to achieve state of the art results, especially when
combined with gradient based methods. Many improvements have thereafter been developed
[29, 30]. A field of particular interest in reinforcement learning have been methods, which
do not solely focus on exploitation but rather encourage exploration. Edoardo Conti et al.
computed, inspired by nature’s drive towards diversity, the novelty of policies. This so-called
Novelty Search (NS) encourages the exploration of not yet conducted behavior. Combined
with an evolutionary strategy this approach proved to enhance the overall performance, since
the algorithms were less likely to get stuck at local optima [31].

2.4 Diversity
Diversity is needed for a variety of tasks, yet can be interpreted, and therefore calculated in
many different ways. In image classification, diverse network ensembles have shown to im-
prove accuracy as well as out-of-distribution robustness [5, 26]. Important for the overall per-
formance of ensembles is not only that the individual networks have high accuracy, but also
that they make their mistakes in different parts of the data.[32] Stanislav Fort et al. show that
such ensembles work best when their parameter space is diverse. They demonstrate that the
decorrelation power of randomly initialized networks is unmatched by other diversity enhanc-
ing methods like Bayesian principles reviewed in their paper. These methods tend to solely
explore areas of singular modes of the function space whereas random initializations are capa-
ble of exploring diverse modes [33]. To measure diversity resp. similarity, they compared the
cosine similarity of weights of the neural network. The cosine similarity of two vectors A and
B is calculated in equation 2.15.

12



2.4. Diversity 13

similarity = cos(θ) =
A ·B
‖A‖‖B‖ (2.15)

This measure turns 1 if A and B are identical and 0 if the vectors are orthogonal. The parame-
ters of neural networks can be turned into flattened weight vectors, so that the cosine similarity
of the weight space of two networks v1 and v2 can be estimated with equation 2.15.

Deutsch also tries to create diverse networks form ensembles. Instead of measuring the di-
versity of the weights by calculating the cosine similarity, he tasks the entropy as a diversity
measure. Since the overall entropy of weights can be increase by trivial symmetries like scal-
ing or filterwise permutations, Deutsch performs a method called gauge fixing. The entropy
therefore only increases when the weights are essentially different, and therefore no trivial sym-
metry transformation exists.[5] The entropy H of the weights is estimated by the Kozachenko-
Leonenko estimator [25] (see 2.16).

H = ψ(N) +
d

N

N

∑
i=1

log(εi) (2.16)

Here, ψ is the digamma function, the logarithmic derivative of the gamma function Γ(N), d
is the dimension of the samples, in this case the dimension of the input of the hypernetwork
(chapter 2.2), and εi is the distance from one flattened weight vector θi to its nearest neighbor
in the set of sampled weight vectors [5, 34].

In the field of RL exploration can be improved through effective diversity [3]. Jack Parker-
Holder et al. try to enhance the overall performance of RL-agents by boosting exploration.
Having a population of agents and a multi-objective loss function increases diverse behavior.
However, the differences between the policies of such populations remain a difficult property
to measure. Typically the contribution of each individual to the overall population reward-
diversity objective is calculated. This may lead to constant switching of behavior between
the individuals and prevent single agents from exploiting promising behavior further [35]. To
tackle this problem, Parker-Holder et al. introduced a method called Diversity via Determinants
(DvD).

Figure 2.7: (a) Pairwise distance: populations of agents split into cluster with agents within one
cluster exploring similar policies. (b) Determinants: Embedded policies φ(θi) lie in
a hyperplane.[3]

Instead of restricting the policy update πθt+1
by some NS objective, they consider action-
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14 Chapter 2. State of the Art

based behavior embeddings. The authors mentioned before investigated diversity in the weight
space of neural networks. This isn’t reasonable for RL-agents which are supposed to explore
diverse strategies. Instead, the diversity of the action space should be evaluated. To do so Be-
havioral Embeddings (BE) are introduced which are defined as follows:

Behavioral Embeddings: Let θi be a vector of neural network parameters encoding a policy
πθi and let S be a finite set of states. The BE of θi is defined as: φ(θi) = {πθ(·|s)}s∈S .[3]

This means that for φ : θ → Rl two policies are identical when for each state the same actions
are chosen (equation 2.17). l = |a| ×N, where a is the dimensionality of the action and N the
number of states.

φ(θi) = φ(θj)⇔ πθi = πθj (2.17)

θi and θj represent the flattened weight parameters of the networks associated with the poli-
cies. The embeddings of such policies are approximated by

φ∗(θi) = Es∼S [{πθi(·|s)}] (2.18)

This means that all the states are drawn form a joint replay buffer. So all agents are trained
with the same states, even though they explore the environment independently.Two such policy-
embeddings can be compared using a kernel function defined as k(x1, x2) ≤ 1. A popular
choice is the squared exponential kernel, but any kernel can be chosen. Transferred to the be-
havioral embeddings, the similarity between two policies can be defined as k(φ(θi), φ(θj)) =
1⇔ πθi = πθj . Polices can be considered to be orthogonal when k(φ(θi), φ(θj)) = 0.

To estimate the overall diversity of a population of agents, Jack Parker-Holder et al. defines
the populations diversity as follows:

Population Diversity: Consider a finite set of M policies, parameterized by θ = {θ1, ..., θM},
with θi ∈ Rd . We denote Div(Θ) = det(k(φ(θit), φ(θjt))

M
i,j=1) = det(K), where K : RlxRl → R

is a given kernel function. Matrix K is positive semidefinite since all principal minors of det(K)
are nonnegative.[3]

From a geometric perspective this means that the determinant of the kernel matrix represents
a parallelepiped plane spanned by the feature maps of the corresponding kernel. By maximiz-
ing the determinant the volume of this feature space is effectively "filled". Since in the case of
using BE the feature space can be considered to be equivalent to a behavior space, this also
maximizes the diversity of the actions [36]. For a detailed derivation of the concepts above, see
the Appendix of [3].

Having defined such a new diversity measure, the objective function can be defined as

J(Θt) =
M

∑
i=1

Eτ∼π
θi

[
R(τ)

]
+ λtDiv(Θt). (2.19)

Parker Holder et al. show that this approach finds the different modes of solutions in multi-
modal environments. This is very similar to equation 2.12. The first part of the sum represents
the individual rewards, whereas the second part takes the diversity of the population into
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account. Though this objective was formulated in the context of ES, it can be transferred to the
loss function of hypernetworks.

A difficult topic remains the choice of λ. It highly effects the overall performance of the
algorithm. If it is chosen too low, no diversity is found, since the selection pressure is too low.
Chosen too high, the population won’t reach local optima but will only behave in a more and
more diverse way.

To tackle this problem, multi-armed bandits [37] are introduced as proposed by Jack Parker-
Holder et al.. This enables the algorithm to favor the different objectives, reward and diversity,
at different stages of the optimization process by shifting the value of λ.

In the next chapter the methods and concepts used in this thesis will be introduced. The focus
will lie on the implementation of the hypernetwork as well as the measurement of diversity.
The concepts developed will expand the approaches covered in this chapter.

3 Methods and Concept
3.1 Hypernetworks for Reinforcement Learning
Instead of training the neural network of a RL algorithm directly, a hypernetwork can be used
to generate the weights of such networks. Though normally a hypernetwork is only used to
generate the weights of one main network (or a batch of the main network’s weights), it can
also be designed to generate the weights of many different networks.

Figure 3.1: With a random vector z the hypernetwork (left) creates a set of weights of agents
(middle) which interact with the same environment (right), but are independent
from one another.

In figure 3.1 the overall structure of the approach can be seen. A hypernetwork receives a
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16 Chapter 3. Methods and Concept

batch of random vectors z as input and generates the weights of the networks of the agents. The
agents then interact with the environment by taking actions and receiving states and rewards.
With these trajectories the losses of the agents are calculated and the hypernetwork is updated.
Then a new batch of random vectors z is drawn and the next iteration starts.

In the case of a DDQN, the weights of the target network are updated every n training steps
and are set equal to the weights of the trained online network. This means that only one set of
weights has to be generated by the hypernetwork: the weights of the online network. These
weights can then, just like it is the case in ’vanilla’ DDQN training, be taken to update the
weights of the target network.

For the A2C, the hypernetwork has to create two different sets of weights for actor and
critic. Depending on the implementation of the A2C, actor and critic network can share the
first layer(s) and only differ in the hidden and/or output layer(s). This can be helpful to de-
crease the number of parameters needed to be trained. The hypernetwork will create some
shared weights for both networks as well as distinct ones for either actor or critic (see chapter
3.1.2).

The hypernetwork used will take a random vector z of dimension d sampled from a uniform
distribution between -1 and 1 as input. For each vector zi the hypernetwork generates one set
of weights ϕi for the main network with i ∈ {1, ..,n}, where n is the so-called hypernetwork
batch size. With each of these generated main networks an episode in the game environment
is played. In the case of DDQN, these episodes are saved in separate replay buffers for each
agent. For the A2C no replay buffer is needed.

The hypernetwork creates a batch of n different agents. Each one of these agents interacts
with the same environment, but every agent is trained only with it’s own transitions. This
enables the creation of a population of diverse agents, similar to the population used in ES-
algorithms [31].

3.1.1 Loss Function

Following the approach of Deutsch and Parker-Holder et al., the loss function of the hypernet-
work LG is split into two terms

LG = Lagents + λLdivserity (3.1)

The Lagents corresponds to the sum of the loss functions of either the DDQN’s or the A2C’s
(see 2.3 and 2.9).

In contrast to the approach of [5] and [26], in the case of RL, diversity of weights isn’t the
objective. Even though building diverse ensembles of networks might also be applicable to RL
problems, this won’t be considered here. Instead, a different diversity measure is used, namely
the diversity in action space. The BE as proposed by [3] will be used as a basis for two different
evaluation methods of diversity.

3.1.1.1 Cosine Similarity

One way to calculate diversity is the cosine similarity (see equation 2.15). When doing so
for a batch of agents generated by a hypernetwork, the states used as inputs have to be the
same for all main networks in order to be able to estimate the diversity of the actions. During
training this is normally not the case, since all agents are trained with their own trajectories. At
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3.1. Hypernetworks for Reinforcement Learning 17

each gradient update of the hypernetwork, states are sampled from the state space Si of one
main network Mθi of the hypernetwork batch. These states are then used as input for all main
networks and the actions are used to calculate a cosine similarity matrix of all main network
pairs. Note that only a pairwise similarity estimation is possible with equation 2.15. The values
of the matrix are then summed up and yield the value of the diversity loss Ldiversity of the batch.

3.1.1.2 Diversity via Determinants

Another way to estimate the diversity between the actions of agents is DvD [3] as has been
shown above. Instead of using the cosine similarity to estimate the diversity term in equation
3.1, the diversity measure from equation 2.19 can be applied. The diversity can be defined as

Div(Θ) = det(k(φ(θit), φ(θjt))
M
i,j=1) = det(K) (3.2)

and can be set to Ldiveristy, where K is the kernel matrix. The embeddings φi are the Q- or
probability values for the actions of the agents M. As a kernel k, the squared exponential kernel
is chosen (see equation 3.3). x1 and x2 are the embedding vectors and l is some length scaling
set to 1.

kSE(x1, x2) = exp
(
− ‖ x1 − x2 ‖2

2l2

)
(3.3)

In order to use equation 3.2 as Ldiversity in the loss function of the hypernetwork, it must
be possible to calculate analytic gradients of det(K). This is possible as has been proven by
(author?). The hypernetwork can then be updated using automated differentiation. The proof
of the lemma below can be found in the Appendix of [3].

Lemma 3.1. The gradient of log(det(K)) with respect to Θ = θ1, ..., θM equals: ∇θlog(det(K)) =
−(∇θψ(θ))(∇ψK)K−1, where ϕ(θ) = ϕ(θ1)...ϕ(θM).

The pseudo code of the hypernetwork can be seen in Algorithm 4. For detailed information
about the implementation see Appendix 5 and 5.

3.1.2 Architecture

The overall architecture of the hypernetwork is the same as in [5]. The main network M has m
layers and h filter/neurons or subgroups of neurons. θl,i are the weights corresponding to the
i’th neuron/filter/subgroup of the l’th layer.

Because the parameter size of the hypernetwork H would scale badly with the size of the
main network, if it would simply be a multi layer perceptron (MLP), where each output neuron
corresponds to a weight parameter of the main network, a generator structure is chosen instead
(see figure 3.1.2).

A d-dimensional input vector z is taken as input of the extractor network E. This extractor
outputs for each layer embedding em,h. One embedding vector corresponds either to a single
neuron or a subgroup of neurons in the layer. Depending on the size and the needed resolution
the size of the encoding as well as the size of the subgroup is chosen. This vector is taken
iterativly as input of the weight generator networks Wm. Each layer of the main network
has its corresponding weight generating network, which outputs for each part of the encoding
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18 Chapter 3. Methods and Concept

Algorithm 4 Hypernetwork
Initialize hypernetwork G(z; ϕ) and environments
for each iteration do

draw random vector zn with n as hypernetwork batch size
create n sets of weights of agents with weights {θ1, ..., θn} = G(zn; ϕ)
for each agent of batch do

play episode of the game and store transitions in Di

end for
for n in range minibatches do

sample states si of size minibatch from Di

calculate the losses forMθi(si)
estimate the diversity of the batch Ldiversity

perform gradient update G(zn; ϕ)
end for

end for

Figure 3.2: The Extractor E takes the random vector z as input and outputs the embedding
vectors e. These vectors are fed to the weight generators W1...Wm which output the
weights for the main network θ. The Extractor outputs several embeddings for each
weight generator. Each weight generator corresponds to one layer, so for each layer
of the main network, the same weight generator is used.

vector em,h the weights. With this approach it is possible to reduce the size of the hypernetwork
significantly.

For the DDQN the architecture is quite simple. For each layer of the DDQN online network
one weight generator is created. For the A2C the same weight generator is used for the first
layer of the actor and the critic, but the embeddings by the extractor for the layers differs. For
the other layers distinct weight generators are used.

Weight initialization has been widely studied for neural network, but almost no research has
been done on the weight initilization of hypernetwork [38]. Weight initilization methods like
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3.2. Evolutionary Strategy 19

the the glorot-method [39] are widely used, but fail to generate weights for hypernetwork of an
adequate scale. This is because normally the weights are sampled uniformly from a distribution
which highly depends on the size of inputs of the layer. For hypernetworks this leads to bad
results. Instead, the weights of a hypernetwork are drawn according to a normal distribution
from the glorot-method.

3.2 Evolutionary Strategy
An evolutionary method like the genetic algorithm can be used to find diverse playing agents.
In evolution based algorithms the selection criteria is crucial for the overall outcome of the
population. As has been described in chapter 2.3, an evaluation of the population is performed
after each generation and an elite is selected. The selection criteria is often the achieved score
of the individuals. This follows the idea of ’survival of the fittest’.

In evolutionary methods, as opposed to gradient methods, the network is considered to be
a black box. Salimans et al. [40] train the networks by applying additive Gaussian noise to
the parameters of the networks. The gradient is estimated by taking the sum of the sampled
perturbations and weigh it by the reward. The weighting can be expanded by a diversity term
to account for novelty seeking behavior [31].

θmt+1 = θmt + η
1

kσ

k

∑
i=1

[Rm
i + λDivt(i)]g

m
i (3.4)

This leads to equation 3.4, which shows the parameter update of a population of size M. A set
of agents Θt = {θit}Mi=1 at iteration t is considered. Gaussian perturbations of size {gmi }

m=1,...,M
i=1,...,k

are drawn and the set {gm1 , ..., gmk } is sent to the m’th worker. This worker then evaluates the
reward of the agent θmt for each of the k permutations (Rm

i ). A second partitioning is used to
calculate Divt(i): Subsets of Di = {g1i , ..., gMi } are created and the diversity is calculated by

Divt(i) = Divt(φ(θ
1
t + g1i ), ..., φ(θMi + gMi )). (3.5)

The contribution of the entire subset of D is therefore considered, instead of only one indi-
vidual vector gmi . In equation 3.4 η is the learning rate and σ is a smoothing parameter. This
leads to Algorithm 5.

Algorithm 5 Evolutionary Strategy (DvD) [3]
Input: population size M, fitness function F, diversity function D
Initialize i random DNNs: i ∈ {1, ...,N}
for g = 1,2, ... , G generations do

Draw random vectors {gmi }
m=1,...,M
i=1,...,k

Evaluate score of the agents Fi = F(θgi + gmi )
Calculate diversity for gm: Divt(i) = Divt(φ(θ1t + g1i ), ..., φ(θMi + gMi ))
Estimate gradients and update weights θmt+1 = θmt + η 1

kσ ∑k
i=1[R

m
i + λDivt(i)]gmi

end for

A simpler approach follows the idea of [27] doesn’t keep a static population of agent and tries
to estimate the gradients with perturbations, but rather generates a mutated new population
after each generation. Essentially, the approach described in Algorithm 3 is further developed:
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20 Chapter 3. Methods and Concept

A population of agents is evaluated by some fitness function and a elite is selected. But instead
of randomly mutating the elite now until the initial population size is restored, several random
vectors are evaluated in terms of diversity. For each random vector by which the elite members
are mutated the overall impact on the diversity of the whole elite group is measured via the
DvD approach. Then the elites are mutated only with the random vectors which scored highest
in terms of diversity. Score and diversity are considered when selecting and mutating the
population. This can be seen in Algorithm 6:

Algorithm 6 Genetic Algorithm
Input: population size N, number of selected individuals T (elite size), policy initialization
routine φ, fitness function F
Draw Pi = φ(N (0, I)); i ∈ {1, ...,N}{initialize random DNN}
for g = 1,2, ... , G generations do

Evaluate Fi = F(Pi)
Sort Pi with descending order by Fi

select elite candidates Ci ← P1...T
for i in range mutation number m do

Draw gi and estimate the impact on the elite members
Div(i) = Div(φ(C1 + gi), ..., φ(CT + gi))

end for
Sort gm with descending order by Divi score and select best mutation vectors g∗

for i in range N do
Add g∗ randomly to elite Ci

end for
end for

In the next chapter the experiments used to evaluate the proposed new concepts will be
described and analyzed. The new algorithms will be tested in a variety of tasks to prove the
applicability of the hypernetwork approach to reinforcement learning problems.
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4 Experiments
In this thesis the hypernetwork approach is evaluated in three experiments. First, the image
classification experiment from Deutsch’s paper will be reproduced. Second, a simple graph
game experiment will serve to evaluate the applicability of the new diversity measures to the
overall hypernetwork approach. Additionally, the hypernetwork will be bench marked against
two population based methods as proposed in chapter 3.2. Lastly, the hypernetwork will be
tested in a challenging imperfect information game. The code can be found here:

https://github.com/GeorgMiller/Hypernetworks

4.1 Image Classification
As a first experiment a simple image classification task is performed. As a dataset the MNIST
dataset is chosen. The classifier network (main network) will be the same as in Deutsch’s paper
[5]. All implementation details can be found in the appendix.

Figure 4.1: Hypernetwork validation set accuracy for
different λ

The input of the hypernetwork z
is for the classification task uniformly
drawn from [−1, 1]. The size of z is 300.
The size of the vector seems big com-
pared to other generative methods like
GAN’s, but since this size was chosen
by Deutsch, it will be kept for the im-
age classification experiment. The loss
gradients are estimated using batches
of size 32. For each vector z of the
batch, 32 images (minibatch size) are
classified and the loss is calculated. The
hypernetwork is trained for a total of
10.000 batches. The hyperparameter λ
is chosen to be 103, 104 and 105. The hy-
pernetwork has a total of 516.040 train-
able weights, the main network a total
of 20.018 weights.

4.1.1 Accuracy

The training of the hypernetworks on the MNIST dataset can be seen in figure 4.1. The vali-
dation set accuracy of randomly sampled classifier networks from the hypernetwork batches
quickly reaches around 98%. The parameter λ for the later experiments is chosen to be 10.000
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22 Chapter 4. Experiments

since the accuracy as well as the training time doesn’t change by a large margin between 10.000
and 100.000.

4.1.2 Diversity

One way to show that the hypernetwork doesn’t just create noise around a singular optimal
solution but instead finds diverse local optima of the loss landscape is to construct a path be-
tween two vectors z1 and z2. Two different paths can be generated: directly by {G(z1; ϕ)t+
G(z2; ϕ)(1− t)|t ∈ [0, 1]} which combines the generated weights of the two vectors linearly
after generation and an interpolated path {G(z1t+ z2(t− 1); ϕ)|t ∈ [0, 1]} of the hypernetwork
input. The direct path would only then have high accuracy, if the diversity is achieved solely
by adding isotropic noise around a singular optimal vector. As can be seen in figure 4.2, af-
ter 100 batches the weight path constructed by the hypernetwork already starts to outperform
the linear weight combination, but the solutions on the loss surface still lie close to each other.
After training for 10.000 batches, the hypernetwork constructs a high accuracy path between
two solutions, which are separated by a low accuracy valley in weight space. Therefore, the
diversity of the generated weights isn’t due to trivial operations. This coincides with the results
of Deutsch. It shows that the hypernetwork generates diverse samples from the distribution of
optimal weights of the main network.

Figure 4.2: Linear and interpolated path in weight space between two random vectors in the
beginning (left) and after training (right).

The diversity of the generated weights can be compared to randomly initialized and then in-
dependently trained networks. In figure 4.3 the cosine similarity of the flattened weight vectors
of 32 randomly initialized classifier networks are compared with a batch of networks generated
by the hypernetwork. During training, the hypernetwork first generates similar weights. After
10.000 epochs, the solution space of the generated networks becomes more diverse, but does
not match the diversity score of independently trained networks. In future experiments, the
training time could be increased to evaluate if the hypernetwork could find as diverse solutions
as independently trained networks. Compared to other diversification strategies as analyzed
by Garipov et al., the hypernetwork approach creates a more diverse set of weights [26].
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4.2. Graph Game 23

Figure 4.3: Cosine similarity of randomly initialized trained classifier network weights (left).
Cosine similarity of generated weights by the hypernetwork during (middle) and
after training (right).

The experiments show that a single hypernetwork is capable of generating a variety of di-
verse samples from the distribution of weights of main networks. The diversity measure can
easily be modified by manipulating or exchanging the diversity term in the loss function. This
is an easy and uncomplicated strategy and it seems plausible to apply this method to other
research fields.

4.2 Graph Game

Figure 4.4: Graphical illustration of the graph game with starting point (blue) and goal (green).
The two purple thresholds upper right and lower right indicate which path the agent
takes. The four red paths are diverse optimal policies by an agent.

To evaluate the hypernetwork approach in a RL environment, the A2C and the DDQN are
tested in a simple graph game. The graph game environment considered in this experiment is
a simple squared grid of size 7x7. In the beginning of an episode the agent starts in the upper
left corner at coordinates (1,1) and can move along the grid one node at each time step. It can
select between four actions: Up, down, left right. In the middle of the grid, the connections
between the nodes are removed so that an obstacle emerges. Whenever the agent tries to take
an action which isn’t permitted due to missing links, it will remain in the same state as before.
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24 Chapter 4. Experiments

In the lower right corner the goal-node is located at (5,5). The agent will receive a reward of 1
if it reaches this node and the episode ends. The episode also ends if a maximum number of 20
moves is reached. For each move the agent receives a small penalty to enforce finding an op-
timal strategy. A graphic of the game can be seen in figure 4.4 as well as three optimal strategies.

In figure 4.4 two thresholds can be seen. They are used to determine if an agent decides to
either take the right or the left path. Since the maximum number of moves is 20, the agent can
only cross both thresholds and reach the goal if it takes the right path. If it only crosses one, the
agent might have switched its decision.

The training of an A2C and a DDQN can be seen in figure 4.5. The easy RL-task is mastered
in less then 1000 episodes by both of them, but the A2C doesn’t reach an optimal equilibrium.
Instead, the agent fluctuates around the optimal solution without stabilizing. The DDQN on
the other hand needs more training time but reaches an optimal solution. Therefore, the DDQN
agent is chosen for the future experiments with the hypernetwork as well as the evolutionary
methods.

Figure 4.5: The normal training of A2C and
DDQN.

To evaluate the hypernetwork, a random vec-
tor z of size 4 is drawn uniformly between -1 and
1. The losses are calculated as described in chap-
ter 3. To estimate the diversity, the cosine loss as
well as the DvD loss is used. The exact details
of the architecture of the hypernetwork can be
found in appendix 5.

The hypernetwork batch size is chosen to be
2 for most of the experiments, but also an ex-
periment with larger batch sizes is conducted.
Each of the agents of a batch plays one round
of the graph game and the transitions are stored
in separate replay buffers. Then the losses of all
the agents on their transitions is calculated and
summed up. Thereafter 15 states are sampled
from the replay buffer of one randomly picked
agent and fed as input to all the agents. The re-
sulting actions are taken as the embedding vectors to estimate the diversity.

As can be seen in figure 4.6 a normally trained agent decides to choose only one direction
(left), without reaching the goal. After 1000 episodes the agent always goes left and manages
after an additional 1000 episodes to always reach the target (note that the optimal score is 0.96).
The hypernetwork, when trained without the diversity loss simply with the same objective
function as the normal DDQN and with a batch size of one, shows a similar behavior. After
around 400 episodes the agent starts to mainly go right without reaching the goal. After 600
episodes the agent reaches almost every time it goes right the target. The solution of the hy-
pernetwork is not as stable as the one found by the normal DDQN due to the random vector
as input. Longer training times only partially decrease this instability. Similar to the A2C, the
hypernetwork doesn’t seem to find a stable optimal solution without fluctuations.
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Figure 4.6: Reward and percentage of going right of the DDQN network (left) and the DDQN-
hypernetwork without a diversity loss therm (right).

Figure 4.7: Reward and percentage of going right of the hypernetwork trained with the cosine
loss (left) and λ = 0.8 and the DvD loss (right) with λ = 0.05.

Training with Cosine Similarity: The training of the hypernetworks with the cosine loss
with a value for λ of 0.8 can be seen in figure 4.7. Again, in the beginning the percentages for
going right show moderate values while the generated main networks are still exploring. After
around 1100 iterations the generated agents manage to reach the target most of the time, but at
the same time the networks do not always go right or left, but instead the percentage fluctuates
strongly. This indicates that different solutions are generated for the randomly drawn input
vectors.

Training with Diversity via Determinants: In figure 4.7 the training of the hypernetwork
with the DvD loss can be seen. The parameter λ was chosen to be 0.05, but hyperparameter
tuning as well as an adaptive mechanism as proposed in [3] may lead to better results. The
hypernetwork finds an, albeit unstable, optimal solution after 500 iterations. The percentage
of going right highly fluctuates without apparent influence to the overall score. The estimated
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mean is around 60%. Compared to the cosine loss, the DvD loss shows faster learning and a
more stable score. Also it seems that the DvD loss causes the hypernetwork to explore the two
different solutions in a more balanced way.

Figure 4.8: Hypernetwork DvD loss and per-
centage of going right with batch
size of 8 and λ = 0.05

In figure 4.8 the percentage of going right
is plotted together with the DvD loss. In-
stead of 2 the batch size is increased to
8. The higher batch size leads to a slower
decrease of the loss and a higher fluctua-
tion in the choice of direction. This is in
line with the results of Parker-Holder et al.,
which showed that the batch size should
be picked in the same scale as the solution
space.[3]

Genetic Algorithm and Evolutionary Strat-
egy: The hypernetwork can be compared
against other diversity enhancing algorithms
like population based learning. In figure 4.9 two
approaches introduced in chapter 3.2 are tested
as a comparable baseline for the hypernetwork
approach. The Genetic Algorithm, as described in Algorithm 6 is trained with a population
size of 20 and an elite size of 4. Each generation first evaluates all 20 agents for 2 episodes. The
50 mutation vectors are randomly added to the elite and the diversity enhancement is mea-
sured. The 20 vectors leading to the highest population diversity are then used to recreate the
population of size 20. The population is trained for 3000 generations, but this is not comparable
to the computational time of 3000 episodes of the hypernetwork. Each generation needs more
then 20x more episodes played than the hypernetwork. As can be seen in the graph, the GA
fails to find a diverse set of agents. Even though the agents reach an optimal score after 2250
generations, the population itself doesn’t yet behave diverse after 400 generations.

The second population based algorithm, the ES, is able to find an optimal and diverse so-
lution. The population size of the ES approach described in Algorithm 5 is 6. The gradient
is approximated with a combination of the DvD loss and the reward (see equation 3.4). The
learning rate is chosen to be 0.01 and in each generation 10 random vectors are evaluated for
each agent in the population. The population is trained for 3000 generations, which need more
then 6x the computation time of the hypernetwork approach. After 200 generations the first
member of the population finds the first optimal solution by going right. The second agent of
the population find the second solution after 2200 generation by going left. The population is
hence capable of finding both diverse solution of the graph game.

The ES and the hypernetwork both find the diverse solutions while normally trained agents
and the GA approach fail to do so. The hypernetwork surpasses the evolutionary approach
in terms of computation time. While the ES needs more then 2000 generations to find both
solution the hypernetwork only needs around 1100 iterations. The speedup is much larger
than the factor of 2, since one generation equals approximately 6 iterations.

The experiments of the graph game have shown that the hypernetwork approach is applica-
ble to RL-problems. Not only does the hypernetwork find optimal solutions of the given task,
they are also diverse when a diversity loss term is added to the loss function.
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Figure 4.9: Reward and percentage of going right of the genetic algorithm (left) and the evolu-
tionary strategy algorithm (right).

4.3 Imperfect Information Game
Before choosing an imperfect information game, different requirements need to be considered:

1. One of the main problems of research in AI is the hardware needed to get state of the art
results. Most of the papers reviewed used several servers for days or weeks for training.
Therefore competing against these algorithms doesn’t seem reasonable.

2. The chosen game should be complex enough to have different tactics in order to see if the
diversity in weight space correlates with different playing styles.

Considering the above criteria, DouDizhu, a chinese card game, is chosen. The rules of the
game are noted in the box below.

The framework of the game was taken from the RLCard project [41], but some modifications
were made. One main challenge for RL in DouDizhu is the large action space. The number of
possible combinations is 27.472, an impractical output of a neural network. Therefore, some
simplification has to be made. The RLCard framework performs action grouping and reduces
the amount of possible actions to 309. This is still quite a large action space, but reasonable. The
action grouping can be seen in table 4.1. If the action selected by an agent isn’t possible because
the agent doesn’t contain the necessary cards, the framework randomly selects a playable ac-
tion. Note that selecting the action ’pass’ is mostly, but not always possible. Therefore ’pass’
cannot be selected as a default action. Once an agent gets rid of all of its cards, the episode ends
and a reward of 1 for the winning party and a reward of 0 for the loosing one is set.

A simplification of the game in the RLCard framework is, that the bidding phase doesn’t
exist. Instead, the cards of each player are evaluated heuristically before each game and the
player with the best hand is selected as landlord automatically. Therefore, it is possible to de-
termine whether the agents should (always) play as landlord or peasants.
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DouDizhu is a chinese card game which is played with a 54-card deck including a red
and a black joker. The rank of the cards from high to low is: red joker, black joker, 2, A,
K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3. The color of the cards is unimportant. In the beginning of
each game every player receives 17 cards. The remaining three cards are put face down
in the middle.
To determine the roles (Landlord, Peasant, Peasant) the player who received the first
card can make a bid of 1, 2 and 3 or pass. The next players in the round can then either
bid higher or pass. If all players pass, the cards are shuffled again. The player with the
highest bid becomes landlord and takes the three cards in the middle to his hand.
The landlord starts the game by playing a combination of cards (see table 4.1). The
player to his left can either play a higher card, a higher combination of cards with the
same number of cards and the same combination or the player can pass. The round
continues in the same manner until two players successively play pass. The played
cards are then put aside and the player who played the last combination can start the
new round with any combination. There are two exceptions: A rocket (two jokers) can
beat any combination and can always be played (if it’s the player’s turn). Also a bomb
(four of a kind) can beat any combination, except for a rocket or a higher bomb.
The player who first gets rid of all of his cards wins the game. Depending on the bid
at the beginning of the game, 1, 2 or 3 points are received if the landlord won. If one
of the peasants won, both receive half of the points as reward. If a bomb or a rocket is
played during the game by either player, the bidding points are doubled each time and
distributed accordingly to the winning player(s).

Type Number of Actions Number of actions after Abstraction Action ID
Solo 15 15 0-14
Pair 13 13 15-27
Trio 13 13 28-40
Trio with single 182 13 41-53
Trio with pair 156 13 54-66
Chain of solo 36 36 67-102
Chain of pair 52 52 103-154
Chain of trio 45 45 155-199
Plane with solo 21822 38 200-237
Plane with pair 2939 30 238-267
Quad with solo 1326 13 268-280
Quad with pair 858 13 281-293
Bomb 13 13 294-306
Rocket 1 1 307
Pass 1 1 308
Total 27472 309

Table 4.1: Action grouping for DouDizhu

As can be seen above, the actions of the game are encoded into an array of length 309. The
state encoding on the other hand is more complex. Some changes had to be made to the orig-
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inal state encoding of the RLCard framework, because it only contained a minimal amount of
information necessary to play the game. This led to poor performance of the playing agents. In
cooperation with Jing Li a new state encoding was developed. It consists of 9 feature planes.
Each of these one-hot encoded planes is of shape 5x15 (see table 4.2). The five rows represent
the amount of cards (starting in the first row with zero, up to four in the last row) held by the
player, the fifteen columns represent the card values from ’3’ to ’RJ’ (going left to right). In the
example in table 4.2 one 3, two 4s and four 8s are encoded. Each of the seven feature planes
encodes distinct information, as can be seen in table 4.3.

0 0 1 1 1 0 1 1 1 1 1 1 1 1 1
1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 4.2: State encoding of one feature plane

feature plane information
1 Current hand of the playing agent
2 Union of the other players’ hand
3 Recent action one
4 Recent action two
5 History of played cards by player one
6 History of played cards by player two
7 History of played cards by player three
8 Players role (landlord, first/second peasant)
9 Current length of the hand of the players

Table 4.3: State encoding of one feature plane

Another advantage of the RLCard framework is the existence of a strong rule based agent.
The first implementations of DQN’s in the RLCard paper only managed to win barely 20% as
landlord against this rule based agent [41]. Therefore, reaching a higher score against the rule-
based-agent can be considered a practical benchmark.

For DouDizhu there is no practical way to evaluate the diversity other than with the diversity
losses introduced in chapter 3.1.1. One can not simply check if the actions taken really belong
to different strategies, since the transition between playing styles is continuous. They aren’t
clearly separable such as the decision in the graph game to either turn left or right. Therefore
the experiments focus on the evaluation of the diversity losses with respect to the overall score.

The A2C and DDQN are trained as landlord against the rule-based agent. In figure 4.10, the
winning rates of both normally trained agents can be seen. The agents reach similar scores with
a slight superiority of the A2C.

The analyses of the preference of actions of both agents show that the A2C always tries to
play the same actions. It creates a probability estimate of the best actions (like playing a Quad)
and gives actions like Pair or Trio low probabilities. It then always tries to play these high value
actions, even though most of the time the cards don’t allow to play such a combination. The
DDQN on the other hand seems to learn which actions are playable but struggles to evaluate
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Figure 4.10: Reward of a normally trained DDQN and A2C (left) and the DDQN and the
DDQN-hypernetwork without a diversity loss therm (right).

Figure 4.11: Reward and cosine loss (left) and the DvD loss (right) of the hypernetwork trained
without a diversity loss.

combinations like the Plane or the Quad correctly. This is probably due to the bias of combi-
nation frequency. Since most of the time Solo, Pair and Trio are playable, the DDQN overesti-
mates the values of these combinations. To evaluate diverse playing styles it seems reasonable
to evaluate the performance of the DDQN rather than the A2C, because the DDQN agent seems
to learn a more realistic strategy instead of always trying to play high card combinations.

In figure 4.10 the performance of the hypernetwork DDQN trained without a diversity term
can be seen. The batch size is 2 and the input noise vector size is 4. The learning rate is for all
experiments 10−5 and the network is trained for 30.000 iterations. It performs better then the
vanilla DDQN, even though the score shows higher variance.

In figure 4.11 the cosine loss and the DvD loss are plotted for the hypernetwork trained
without a diversity term. While the DvD loss doesn’t show any interpretable pattern, the cosine
loss shows in the beginning of training still some oscillation, indicating that the hypernetwork
produces solutions with at least some amount of diversity, while it still improves its overall
performance. At the end, the cosine loss is almost one and the hypernetwork outputs almost
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Figure 4.12: Reward and cosine loss (left) and the DvD loss (right) of the hypernetwork trained
with a diversity loss term.

Figure 4.13: Cosine loss of a hypernetwork trained with the DvD loss.

identical agents for arbitrary random vectors as input.
In figure 4.12 the losses of the hypernetwork trained with different diversity terms can be

seen. In the beginning of training the cosine loss again shows strong oscillations. They grow
stronger as training continues, indicating that the hypernetwork indeed outputs diverse play-
ing agents. This diversity seems to come at the cost of lower performance. While the hypernet-
work trained without a diversity loss has a winrate of around 30% after training, the average
score of the agents trained with the cosine loss only reach 20%.

The same problem seems to emerge when the hypernetwork is trained with the DvD loss.
The performance is highly dependent on the choice of λ, and the diversity term leads to poorer
performance of the agents. Additionally, the DvD loss doesn’t seem to decrease after 2000
episodes. It doesn’t seem obvious, that the hypernetwork outputs diverse agents. To further
investigate this issue, in figure 4.13 the cosine loss is plotted for the hypernetwork trained with
the DvD loss. The strong oscillations indicate, that the hypernetwork indeed outputs agents
with some diversity when compared to the cosine loss for example in figure 4.11. The DvD
loss shows a similar effect as the cosine loss quickly after the beginning of training. The strong
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diversity at the start might be a reason for the poor performance, especially compared with the
cosine loss.



5 Conclusion
The experiments have shown that the hypernetwork approach is applicable to RL-problems.
Instead of focusing on the diversity of the generated weights, as has been done in previous
work, the objective function can be modified to optimize the hypernetwork with respect to
the diversity of the action space of the generated target networks. A variety of agents can be
generated with not only high performance in terms of accuracy or score, but also in terms of
diverse solution.

The graph game experiments showed that these solutions significantly differ from one an-
other: The agents found two different optimal solutions, albeit the output didn’t reach stable
solutions like normally trained agents. One reason is that the latent space of the random vec-
tors, which are used as input for the hypernetwork, is not as clearly separable into two distinct
domains as the solution space. Therefore, the hypernetwork fails to consistently create weights
of agents which belong to one of the two solutions. This might be a general problem of the
approach. On the other hand, it could also be due to a variety of not fully understood research
questions. No full hyperparameter tuning was performed in this work. Parameters, which are
used in the vanilla approaches, might not be optimal for the training with hypernetworks. For
example, it is not clear how in the case of DDQN the update rule for the target network should
be and if it is reasonable to adopt the rules from the normal approach.

Another question concerns the weight initialization: A great deal of research has been un-
dertaken on the weight initialization of normal neural network. In the course of this work,
only the glorot normal initialization led to acceptable results, where as the variance scaling ini-
tialization, which was proposed by Deutsch, only worked for extremely simple task like the
classification of the MNIST data set. Even for the graph game, this initialization failed to find
any solution. Future research should therefore especially focus on better initialization methods.

The loss function of the new hypernetwork approach consists of two parts: A first term
which tries to maximize the expected reward, and a second term focusing on the diversity of
the generated agents. The two approaches proposed for the latter term, the cosine similarity
and the diversity via determinants (DvD), both seem to work in principle. In the graph game
experiment, the DvD loss outperformed the cosine loss. A remaining problem is posed by the
choice of the scaling parameter λ. The solutions found are highly dependent on this parameter:
Chosen too low, the diversity is barely considered during the training of the hypernetwork
and no diverse solutions are found. Chosen too high, the hypernetwork fails to maximize the
reward and simply finds a set of highly diverse agents. To tackle this problem, Parker-Holder
et al. proposed to use a multi-armed bandit approach to switch between the two objectives
dynamically. An interesting question for further research in this context would be how the
search of diverse, high performing agents should switch between reward maximization and
diversity during the course of training.

When compared to population based algorithms like GA and ES, the hypernetwork shows
a better performance. It is capable of finding the diverse solutions of the game much faster ( 6
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times the computation time) than the ES. The hypernetwork is therefore able to beat the popula-
tion based algorithms by mapping random vectors to a diverse solution space. Diverse agents
are found more efficiently by combining random noise inputs with a diversity loss function
term.

For a more complex game like DouDizhu, the hypernetwork approach fails to find high
performing diverse playing agents. While the hypernetwork is able to outperform regularly
trained DDQN’s when trained without a diversity loss term, it struggles to do so when the
objective function is extended by a diversity measure. An interesting research question would
therefore the evaluation of other diversity measuring techniques as well as the reformulation
or even combination of the ones introduced in this thesis.

Lastly, it was shown that the structuring of the hypernetwork in extractor and weight gener-
ator decreased the number of weights of the hypernetwork by a large margin. The remaining
network size is still one order of magnitude larger than the main network. Future work on
hypernetwork should therefore also focus on other compression techniques. Ideally, the scale
of a hypernetwork should be comparable to one of the generated main network.
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Appendix 1
Below the architectures of the used networks are noted. Please refer to the Github-link noted above
for further information.

layer name layer components number of weights output size
random vector 300
layer1 fully-connected, number of filters: 300

activation: leaky ReLU 90000 300
layer2 fully-connected, number of filters: 855

activation: leaky ReLU 256500 855 (15x57)
w1a fully-connected, number of filters: 40

activation: leaky ReLU 600 40
w1b fully-connected, number of filters: 26

activation: leaky RelU 1040 26
w2a fully-connected, number of filters: 100

activation: leaky ReLU 1500 100
w2b fully-connected, number of filters: 801

activation: leaky RelU 80100 801
w3a fully-connected, number of filters: 100

activation: leaky ReLU 1500 100
w3b fully-connected, number of filters: 785

activation: leaky RelU 78500 785
w4a fully-connected, number of filters: 60

activation: leaky ReLU 900 60
w4b fully-connected, number of filters: 90

activation: leaky RelU 5400 90

Table 1: MNIST hypernetwork architecture: The output of layer2 is divided into vectors of size 15 and
fed iteratively to the according weight generators w1, w2, w3, w4. The last weight generator
for the output layer is only used once.
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layer name layer components number of weights output size
input image 28 x 28 x 1
layer1 Convolution: 5 × 5, stride: 1 × 1,

padding: ‘SAME’, number of filters: 32
Activation: ReLU
Max pooling: 2 × 2, stride: 2 × 2 832 14 x 14 x 32

layer2 Convolution: 5 × 5, stride: 1 × 1,
padding: ‘SAME’, number of filters: 16
Activation: ReLU
Max pooling: 2 × 2, stride: 2 × 2 12816 7 x 7 x 16

layer3 fully-connected, number of filters: 8
activation: ReLU 6280 8

layer4 fully-connected, number of filters: 10
activation: softmax 90 10

Table 2: MNIST classifier network architecture

layer name layer components number of weights output size
input states 16
layer1 Fully-connected, number of filters: 64

activation: ReLU 1088 64
layer2 Fully-connected, number of filters: 64

activation: ReLU 4160 64
layer3 fully-connected, number of filters: 4

activation: softmax 260 4

Table 3: Graphgame network actor and DDQN: For the DDQN the activation function of the last
layer is changed to linear

layer name layer components number of weights output size
input states 16
layer1 Fully-connected, number of filters: 64

activation: ReLU 1088 64
layer2 Fully-connected, number of filters: 64

activation: ReLU 4160 64
layer3 fully-connected, number of filters: 1

activation: linear 65 1

Table 4: Graphgame network critic



layer name layer components number of weights output size
random vector 4
layer1 fully-connected, number of filters: 300
(both) activation: leaky ReLU 1500 300
layer2 fully-connected, number of filters: 570
(both) activation: leaky ReLU 171570 570 (15x38)
w1c1 fully-connected, number of filters: 100
(critic) activation: leaky ReLU 1600 40
w1c2 fully-connected, number of filters: 136
(critic) activation: leaky RelU 13736 26
w1a1 fully-connected, number of filters: 100
(actor) activation: leaky ReLU 1600 100
w1a2 fully-connected, number of filters: 136
(actor) activation: leaky RelU 13736 801
w2c1 fully-connected, number of filters: 100
(critic) activation: leaky ReLU 1600 100
w2c2 fully-connected, number of filters: 416
(critic) activation: leaky RelU 42016 785
w2a1 fully-connected, number of filters: 100
(actor) activation: leaky ReLU 1600 60
w2a2 fully-connected, number of filters: 416
(actor) activation: leaky RelU 42016 90
w3c1 fully-connected, number of filters: 100
(critic) activation: leaky RelU 1600 90
w3c2 fully-connected, number of filters: 260
(critic) activation: leaky RelU 26260 90
w3a1 fully-connected, number of filters: 100
(actor) activation: leaky RelU 1600 90
w3a2 fully-connected, number of filters: 65
(actor) activation: leaky RelU 6565 90

Table 5: Graphgame hypernetwork architecture (A2C): The first two layers (Extractor) are used to
create the embeddings for actor and critic, but different weight generators are used for the
distinct networks.

layer name layer components number of weights output size
input states 28 x 28 x 1
layer1 Flatten Layer 30
layer2 Fully-connected, number of filters: 512

activation: ReLU 6280 8
layer3 Fully-connected, number of filters: 512

activation: ReLU 6280 8
layer4 fully-connected, number of filters: 512

activation: softmax 90 10

Table 6: DouDizu network actor and DDQN: The same architecture is used except for the activation
function of the last layer, which is in the case of the DDQN linear instead of softmax
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layer name layer components number of weights output size
input states 28 x 28 x 1
layer1 Flatten Layer 30
layer2 Fully-connected, number of filters: 512

activation: ReLU 6280 8
layer3 Fully-connected, number of filters: 512

activation: ReLU 6280 8
layer4 fully-connected, number of filters: 512

activation: softmax 90 10

Table 7: DouDizu network critic

layer name layer components number of weights output size
random vector 4
layer1 fully-connected, number of filters: 300
(both) activation: leaky ReLU 1500 300
layer2 fully-connected, number of filters: 570
(both) activation: leaky ReLU 6018495 570 (15x38)
w1.1 fully-connected, number of filters: 300

activation: leaky ReLU 4800 300
w1.2 fully-connected, number of filters: 676

activation: leaky RelU 203476 676
w2.1 fully-connected, number of filters: 300
(actor) activation: leaky ReLU 4800 300
w2.2 fully-connected, number of filters: 513

activation: leaky RelU 154413 513
w3.1 fully-connected, number of filters: 300

activation: leaky ReLU 4800 300
w3.2 fully-connected, number of filters: 513

activation: leaky RelU 154413 513

Table 8: DouDizhu hypernetwork architecture (DDQN): The first two layers (Extractor) are used to
create the embeddings, the other layers are the weight generators.

Appendix 2
Below the hyperparameters of the implementations can be found. For further information see the
code made available under the link shared above.

Hyperparameter Classifier Hypernetwork
training steps 5000 10.000
learning rate 1e-3 1e-4
decay rate - 0.99998
weights init glorot uniform variance scaling 0.01
batch size 32 32x32
input noise vector - 300
lamBda - 1.000, 10.000, 100.000

Table 1: Hyperparameters: Image classification
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Hyperparameter A2C DDQN Hypernetwork Genetic Algorithm
episodes/generations 3000 3000 3000 3000
learning rate 1e-5 1e-5 1e-4 0.01
decay rate 0.9998 0.9998 0.9998 -
discount factor 0.95 0.95 0.95 -
weights init glorot uniform glorot uniform glorot normal glorot uniform
batch size/ population size 15 15 (2, 8)x15 6
epochs 5 - - -
clipping parameter 0.2 - - -
entropy coeff. 0.05 - - -

Table 2: Hyperparameters: Graphgame

Hyperparameter A2C DDQN Hypernetwork
episodes 30000 30000 30000
learning rate 5e-5 1e-5 1e-5
weights init glorot uniform glorot uniform glorot normal
batch size 32 32 2 x 32

Table 3: Hyperparameters: DouDizhu
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