
Technical University of Berlin

Project Report
Industrial Distributed Control Systems

Development of Deep Reinforcement
Learning algorithm for Autonomous Robot

Navigation

Winter Term 2019/20

Georg Kruse

Pavan Chitradurga Thammanna

Shringar Sham Rao

Department: Industry Grade Networks and Clouds

Professor: Prof. Dr.-Ing. Jens Lambrecht

Supervised by: M.Sc. Linh Kästner

Abstract

This project has been carried out as part of the Industrial Distributed Control Systems
project module under the Department of Industry Grade Networks and Clouds in the
Faculty for Electrical Engineering and Computer Science (IV) at the Technical Univer-
sity of Berlin. This project attempts to demonstrate the feasibility of using a Deep
Reinforcement Learning algorithm such as Deep Q - Networks (DQN) for Autonomous
Navigation using the latest Open Source Tech-stack available such as ROS2, gazebo9,
and turtlebot3 Machine Learning packages (Keras and Tensorflow). It lays out the vari-
ous processes that were followed to install, setup the code, and discusses any limitations
faced in the process. The packages used are studied for their scalability and flexibil-
ity to tweak the various parameters and functions, and thereby enhance the learning
capabilities of the model. The training process was conducted on the DQN model in
two different simulation environments, solely relying on Laser Distance Sensor data for
navigation. The results recorded show successful navigation attempts in a relatively low
number of episodes and includes several observations regarding how the various param-
eters chosen, affect the training outcomes. The scope of modifying these values and
extended training and simulation capabilities have been briefly explored in the report.

1

Contents

1 Introduction 2
1.1 Reinforcement Learning . 3
1.2 Markov Decision Process . 4
1.3 Q Learning . 5
1.4 Deep Q-Networks . 5

2 Motivation 7

3 Problem Definition and Scope 8

4 Tech-stack 8
4.1 ROS2 . 9
4.2 Gazebo9 . 10
4.3 Turtlebot3 . 12
4.4 Tensorflow and Keras . 13

5 Implementation 14
5.1 Installation process . 15
5.2 Installation Obstacles . 16
5.3 DQN Algorithm . 17

5.3.1 Set State . 18
5.3.2 Set Goal . 18
5.3.3 Set Action . 19
5.3.4 Reward Policy . 19

6 Training 20

7 Results 23
7.1 Results - World 1 . 23
7.2 Results - World 2 . 26
7.3 Difficulties . 29

8 Conclusion 31

9 Future Work 31

1 Introduction

Learning, by being acutely aware of how an environment responds to actions performed
and the need to influence or control it, forms the foundational idea underlying nearly
all theories of intelligence. This concept that molds the basis of intelligence in humans,
although may seem to be too broad to grasp in its entirety, has created the means
for developing Artificial Intelligence in specific fields where the application is bound by
a domain. Moreover, if the possible interactions within an environment are relatively
deterministic, then such theories of learning can be directly applied in computational
problems where human-like decision making becomes crucial. [1]

However, the kinds of learning algorithms required for various classes of computational
problems are dependent on one main factor. As imaginable, the fact that they have a
high computational cost is a given, since such problems are usually demanding. How-
ever, whether or not they require vast amounts of data, including labeled data, solely
depends on the kind of computational problem. Thus the scale and how the data is
available forms this main factor.

Figure 1.1: Types of Machine Learning and their Applications [2]

There are three main types of Machine Learning. Unsupervised Learning is usually
applied in cases where data is available, but may not be labeled. Here, various algorithms
are applied to identify patterns or structures that exist within the data. Supervised
Learning is applied usually when sufficient labeled data exists and the model can be
trained to identify relationships between a training set of data and the labels. The

2

1 Introduction 1.1 Reinforcement Learning

trained model is then used to predict or generalize the labels for new data, based on
the observations made in the training set. However, for a real-time scenario with a
specific environment, the situation needs to be assessed and a related action needs to be
taken. Here, the data required also relies on the ability to access information about the
environment dynamically. This is where Reinforcement Learning comes into the picture.

1.1 Reinforcement Learning

Reinforcement learning is a general framework where agents (usually representative of
simulation objects, characters in a game or robots), learn to perform actions in an envi-
ronment to maximize a reward. The two main components are the environment, which
represents the problem to be solved, and the agent, which represents the learning al-
gorithm. The agent and environment continuously interact with each other. At each
time step, the agent takes an action on the environment based on its policy π(at|st),
where st is the current observation from the environment, and receives a reward rt+1
and the next observation st+1 from the environment. The goal is to improve the policy
to maximize the sum of rewards (return). [3]

Figure 1.2: Reinforcement Learning [4]

This figure only shows a general framework along which many other sub-types of
Reinforcement Learning algorithms have been modeled. The choice of the type of algo-
rithm that needs to be used is dependent on the application. This general model can
be extended to include the capabilities of the agent and the changes that could occur
dynamically in the Environment, as well as the computational capabilities of Machine
Learning algorithms that already exist, to best, assess the data obtained.

3

1 Introduction 1.2 Markov Decision Process

1.2 Markov Decision Process

The Reinforcement Algorithm mainly relies on the agent’s ability to make decisions
based on the state. Each state within an environment is a consequence of its previous
state which in turn is a result of its previous state and so on. However, storing all this
information, even for environments with short episodes (where an episode is a sequence
between the first state and a terminal state) is infeasible.

To resolve this, the Markov property is applied to each state, i.e., each state depends
solely on the previous state and the transition from that state to the current state. [5]

Mathematically, a state st satisfies the Markov property, if and only if,

P [St+1 | St] = P [St+1 | S1,, St],

the state captures all relevant information from history.

For a Markov state S and successor state S, the state transition probability function
is defined by,

Pss′ = P [St+1 = s′ | St = s]

It’s a probability distribution over next possible successor states, given the current state.

A Markov process is a memory-less random process, i.e. a sequence of random states
S1, S2, where each state has the Markov property. A Markov process or Markov
chain is a tuple (S, P) on state space S and transition function P.

Similarly, A Markov Reward Process or an MRP is a Markov process with value judg-
ment, saying how much reward accumulated through some particular sequence that we
sampled. An MRP is a tuple (S, P, R, γ) where S is a finite state space, P is the state
transition probability function, R is a reward function where,

Rs = E [Rt+1 | St = s],

it says how much immediate reward we expect to get from state S at the moment. [6]

The agent tries to get the most expected sum of rewards from every state it lands
in. In order to achieve that we must try to get the optimal value function, i.e. the
maximum sum of cumulative rewards. Using Bellman equation, the value function will
be decomposed into two part; an immediate reward, Rt+1, and discounted value of
the successor state γ(St+1), where γ = [0,1] is the discount factor [0,1], giving us the
following Bellman’s equation for MRPs,

v(s) = E [Rt+1 + γ v(St+1)| St = s] [6]

4

1 Introduction 1.3 Q Learning

1.3 Q Learning

Q-learning is a model-free reinforcement learning algorithm to learn a policy telling
an agent what action to take under what circumstances. It does not require a model
(hence the connotation ”model-free”) of the environment, and it can handle problems
with stochastic transitions and rewards, without requiring adaptations. For any finite
Markov decision process (FMDP), Q-learning finds an optimal policy in the sense of
maximizing the expected value of the total reward overall successive steps, starting from
the current state. The Q-learning algorithm can identify an optimal action-selection
policy for any given FMDP, given infinite exploration time and a partly-random policy.
[7]

The algorithm achieves this by performing a sequence of actions that will eventually
generate the maximum total reward (i.e. the policy stated above). Here, the total
reward is called the Q-value and is calculated as follows:

The above equation states that the Q-value yielded from being at state s and per-
forming action a is the immediate reward r(s, a) plus the highest Q-value possible from
the next state s’. Gamma here is the discount factor that controls the contribution of
rewards further in the future. The Q-value is also dependent on the subsequent states
and can be calculated as follows:

This is a recursive equation that can have arbitrary values. However, the best way
to converge these values into an optimal policy has been shown by including a learning
rate as follows:

Here, α is the learning rate and determines exactly to what extent newly obtained
information overrides the information that already exists. [5]

1.4 Deep Q-Networks

Q-learning is a simple yet quite powerful algorithm and in a sense created a cheat-sheet
for the agent to determine the actions that need to be performed. However, if the
environment has too many states, in the order of tens of thousands, and also actions in

5

their thousands, then the cheat-sheet created would simply be too long to process. This
presents 2 problems that need to be resolved:

1. The cost required to save and update that table would increase as the number of
states increases.

2. The time required to explore each state to create the required Q-table would be
unrealistic.

To tackle this, DeepMind technologies came up with an idea to compute, process, and
allocate Q-values utilizing neural networks that were already being used to tackle other
large prediction problems. This is precisely what Deep Q-Learning or Deep Q-Networks
does. [8]

The below diagram accurately illustrates what exactly the DQN algorithm does by
replacing the Q-Learning table:

Figure 1.3: Deep Q-Learning generates the Q-value as well as the Actions that need to
be taken

As observed in the figure, the two main extensions in DQN are as follows:

1. The action is calculated based on the maximum output of the Q-network

2. The Q-value updated is calculated based on the derivation of the Bellman equation
and is given by:

6

Here, the section in green represents the target. As seen, this is similar to the Q-learning,
Q-value calculation. However, here the prediction is arbitrary depending on the ’R’ value
and converges to the final Q-value based on newly acquired information. [5]

2 Motivation

Reinforcement learning (RL) continues to be less valuable for business applications than
supervised learning, and even unsupervised learning. It is successfully applied only in
areas where huge amounts of simulated data can be generated, like robotics and games.
However, many experts recognize RL as a promising path towards Artificial General
Intelligence (AGI), or true intelligence. Thus, research teams from top institutions and
tech leaders are seeking ways to make RL algorithms more sample-efficient and stable [9].

RL has been successfully applied to many different fields such as helicopter control
[10], traffic signal control [11], electricity generator scheduling [12], water resource man-
agement [13], playing relatively simple Atari games [14] and mastering a much more
complex game of Go [15], simulated continuous control problems [16], [17], and control-
ling robots in real environments [18]. The most notable accomplishment is specifically
the use of DQN in playing Atari games by DeepMind technologies which in some cases
achieve superhuman capabilities [8].

There has also been an overwhelming development of various Datasets, technologies,
Simulation environments in the field of Autonomous Navigation and Driving as seen in
the table below:

Figure 2.1: A collection of simulations and datasets to evaluate Autonomous
Navigation Algorithms [19]

7

In addition to these developments and recent work in the field, another project was
carried out last year in the Module Distributed Industrial Control Systems at the Insti-
tute for Industry Grade Networks and Clouds in the Faculty for Electrical Engineering
and Computer Science (IV) at the Technical University of Berlin during the last year.
In the project, they have used Unity, ROS, Gazebo, and 2 CNN approaches along with
DQN, arriving at promising results. Therefore, this proved to be our main motivation
as an opportunity to build on these technologies and explore the possibilities of better
results even further.

3 Problem Definition and Scope

The main aim of this project is to develop a Deep Reinforcement Learning code setup
for Autonomous Robot Navigation with the latest Open Source Tech-stack available,
conduct training, and document the results. The main area of focus is the autonomy of
the system, where the environment is unknown and there is no prior data that the agent
can rely on during the early stages of training.

Here, the robot is expected to rely solely on sensor data based on the capabilities
of the Robot. It is also expected that the training is to be carried out on a simulation
environment, and the trained model could be utilized on a real-world robot that exhibits
the same capabilities as the robot in the simulation.

Furthermore, the scope of technologies to be utilized are extensions of ROS and Gazebo
in the form of their latest versions, and the algorithms that need to be applied fall under
the Deep Reinforcement Learning domain.

Finally, the code developed for the training process should be easily scalable, mod-
ifiable, adapts to the training requirements, and alters the extent of the algorithm’s
functionality. The code setup should ideally utilize the latest Open Source Tech-stack
available for Machine Learning, specifically Deep Reinforcement Learning.

4 Tech-stack

The structure of the project consists of the use and combination of different frame-
works, which as stated in the previous section, are to be extensions of ROS and Gazebo.
The simulation, on the other hand, has to be based on a real robot that exists, due
to which, Turtlebot3 was chosen. The organization that developed the robot, Robotis,
provides examples of use cases and recommends various implementations, library pack-

8

4 Tech-stack 4.1 ROS2

ages, and simulation technologies around the Turtlebot3 framework. Therefore ROS2,
Gazebo9, Turtlebot3, and Keras with a Tensorflow backend have been chosen to form
the Tech-stack utilized for this project. In the following section, these frameworks will
be introduced briefly and an extension of main functions in comparison to the previous
versions will be elucidated.

4.1 ROS2

The Robot Operating System (ROS) is a widely used framework for robotics applica-
tions. It has a wide distribution that comes along with comprehensive documentation
and many freely available use cases that make it easy to learn. Its successor ROS2,
more precisely its version Dashing Diademata, which was released in November 2019,
contained some new features that made the use of this newer version more significant
compared to ROS.

Robot Operating System (ROS) has long been one of the most widely used robotics
middleware in academia and sparingly in the industry. While the huge robotics com-
munity has been contributing to new features for ROS 1, since it was introduced in
2007, the limitations in the architecture and performance led to the conception of ROS
2 which addresses these issues.

The software stack for any robot platform needs several software tools like hardware
drivers, networking modules, communication architecture, and several robot algorithms.
ROS has all these tools under one umbrella, which makes the development of code in
the robot platform relatively straightforward. ROS is, however, more than just a mid-
dleware, and the availability of various solutions and packages for robot navigation,
perception, control, motion planning, simulation, and more makes ROS an important
and crucial asset to the field of Robotics.

However, ROS is far from perfect. There are many requirements in today’s world that
ROS fails to accommodate. A few of the areas that ROS fails are listed below:

• ROS does not support multiple robots with the same master node.

• ROS inherently does not support real-time operation and thus not preferred for
time-critical applications.

• ROS needs high-compute resources and network connectivity on-board for the best
performance.

• Package management on deployed robots is limited.

9

4 Tech-stack 4.2 Gazebo9

• Monitoring, logging, analytics, and maintenance tasks for multiple robots are dif-
ficult in commercial settings.

• Multi-robot/fleet management and interaction is not possible. [20]

The main reasons why ROS would impact this project would have to be due to the
high computation requirements in training, efficient deployment needs to incorporate
the project into a real-world Turtlebot3 robot, and the general potential applications of
Autonomous Navigation in real-time systems.

For these reasons, ROS 2 was introduced with a revamped architecture and enhanced
features and is being rapidly adopted in the robotics community. It is still in its infancy
and several companies and developers have been contributing towards porting the ex-
isting packages to ROS 2 compatibility.

All the differences mentioned, justify the use of ROS2 over ROS for almost any ap-
plication in the field. For this project, we specifically noted the use of Python 3 which
includes the latest implementation and upgrades for TensorFlow and Pytorch, the use of
other build systems, the efficient use of multiple varied packages and independent instal-
lation, the OS compatibility and the ability to pass arguments easily into the roslaunch
files.

4.2 Gazebo9

Robot simulation is an essential tool in every roboticist’s toolbox. A well-designed sim-
ulator makes it possible to rapidly test algorithms, design robots, perform regression
testing, and train AI system using realistic scenarios. Gazebo offers the ability to ac-
curately and efficiently simulate populations of robots in complex indoor and outdoor
environments. It provides a robust physics engine, high-quality graphics, and convenient
programmatic and graphical interfaces. Additionally, all the Gazebo versions are also
Open Source.

Gazebo version 9 was released in 2018. Gazebo9 will have long term support until
2023. The main extensions of this version are the correction of several errors and issues
that occurred in the previous version, as well as the addition of the Ignition project into
Gazebo thereby exposing several libraries for Math, Transport, and Physics improving
the overall performance of the system. It was also transformed from a monolithic project
to a broader approach involving several organizations and communities that actively de-
velop and support the platform. It also has added support for easy and quick integration
with ROS2. [21]

The Gazebo9 version also has an extension of the SDFormat (Simulation Description
Format) and the ’.world’ files. It is an XML format that describes objects and environ-

10

4 Tech-stack 4.2 Gazebo9

Table 4.1: Differences between ROS and ROS2 [20]

ROS ROS2

Uses TCPROS (custom version of
TCP/IP) communication protocol

Uses DDS (Data Distribution System) for
communication

Uses ROS Master for centralized discov-
ery and registration. Complete commu-
nication pipeline is prone to failure if the
master fails

Uses DDS distributed discovery mecha-
nism. ROS 2 provides a custom API to
get all the information about nodes and
topics

ROS is only functional on Ubuntu OS ROS 2 is compatible with Ubuntu, Win-
dows 10 and OS X

Uses C++ 03 and Python2 Uses C++ 11 (potentially upgradeable)
and Python3

ROS only uses CMake build system ROS 2 provides options to use other build
systems

Has a combined build for multiple pack-
ages invoked using a single CMake-
Lists.txt

Supports isolated independent builds for
packages to better handle inter-package
dependencies

Data Types in message files do not sup-
port default values

Data types in message files can now have
default values upon initialization

roslaunch files are written in XML with
limited capabilities

roslaunch files are written in Python
to support more configurable and condi-
tioned execution

Cannot support real-time behavior deter-
ministically even with real-time OS

Supports real-time response with apt
RTOS like RTPREEMPT

ments for robot simulators, visualization, and control. Originally developed as part of
the Gazebo robot simulator, SDFormat was designed with scientific robot applications
in mind. Over the years, SDFormat has become a stable, robust, and extensible format
capable of describing all aspects of robots, static and dynamic objects, lighting, terrain,
and even physics. The components for this project, including obstacles and other objects
were in the form of SDF files.

All aspects of a robot can be accurately described using SDFormat, whether the robot
is a simple chassis with wheels or a humanoid. In addition to kinematic and dynamic
attributes, sensors, surface properties, textures, joint friction, and many more properties
can be defined for a robot. These features allow you to use SDFormat for simulation,
visualization, motion planning, and robot control. The simulation requires rich and com-

11

4 Tech-stack 4.3 Turtlebot3

plex environments in which models exist and interact. SDFormat provides the means
to define a wide variety of environments. In Gazebo9, these are achieved in terms of
’.world’ file extensions. [22]

Gazebo9 seems to be the most stable and efficient version currently with the integra-
tion of ROS2 and community support. Furthermore, Gazebo allows Turtlebot3 to use
virtual sensor data in the simulator: IMU, LDS, and camera information, and the simu-
lation of Turtlebot3 with SLAM or Navigation2. Since we intended to depend on solely
sensor data for this project, Gazebo9 made this specific task of simulation more efficient.

4.3 Turtlebot3

There are 3 versions of the TurtleBot series. In 2017, TurtleBot3 was developed with
features to supplement the lacking functions of its predecessors, and the demands of
users. TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot for use
in education, research, hobby, and product prototyping.

Figure 4.1: Salient features of Turtlebot3 [23]

The goal of TurtleBot3 is to dramatically reduce the size of the platform and lower
the price without having to sacrifice its functionality and quality, while at the same time
offering expandability. The TurtleBot3 can be customized into various configurations
depending on how you reconstruct the mechanical parts and use optional parts such
as the computer and sensor. Also, TurtleBot3 evolved with a cost-effective and small-
sized SBC that is suitable for a robust embedded system, 360-degree distance sensor,
and 3D printing technology. The TurtleBot3’s core technology is SLAM, Navigation,
and Manipulation, making it suitable for home service robots. The TurtleBot can run
SLAM(simultaneous localization and mapping) algorithms to build a map and can drive

12

4 Tech-stack 4.4 Tensorflow and Keras

Figure 4.2: Turtlebot3 Burger components [23]

around your room.

In this project, we utilize mainly the LiDAR component of the Turtlebot3 Burger,
for Laser Distance Sensing, to sense the obstacles that appear before the robot. The
only other components that we may need to consider are the DYNAMIXEL wheels for
motion, and Raspberry Pi and Open CR components for processing the information that
is relayed to the robot.

Robotis offers machine learning packages for efficient integration of Turtlebot3, gazebo9
simulation platform, and the Machine Learning logic for Autonomous Navigation. These
packages in turn use Tensorflow and Keras to expose various options to use and configure
Deep Reinforcement Learning algorithms within the simulation environment and store
them as models. These can then be used for the actual robot in the real world.

4.4 Tensorflow and Keras

TensorFlow is an end-to-end open-source platform for machine learning. It’s a com-
prehensive and flexible ecosystem of tools, libraries, and other resources that provide
workflows with high-level APIs. The framework offers various levels of concepts to build
and deploy machine learning models. Some of the features of Tensorflow are described

13

below:

• Easy Model Building: TensorFlow offers multiple levels of abstraction to build and
train models.

• Robust ML Production Anywhere: TensorFlow lets you train and deploy your
model easily, no matter what language or platform you use.

• Powerful Experimentation For Research: TensorFlow gives you the flexibility and
control with features like the Keras Functional API and Model Subclassing API
for creation of complex topologies.[3] [24]

Keras, on the other hand, is a high-level neural networks library that is running on the
top of TensorFlow, CNTK, and Theano. Using Keras in deep learning allows for easy
and fast prototyping as well as running seamlessly on CPU and GPU. This framework
is written in Python code which is easy to debug and allows ease for extensibility. The
main advantages of Keras are described below:

• User-Friendly: Keras has a simple, consistent interface optimized for common use
cases which provides clear and actionable feedback for user errors.

• Modular and Composable: Keras models are made by connecting configurable
building blocks, with few restrictions.

• Easy To Extend: With the help of Keras, you can easily write custom building
blocks for new ideas and researches.

• Easy To Use: Keras offers consistent simple APIs which helps in minimizing the
number of user actions required for common use cases, also it provides clear and
actionable feedback upon user error. [25] [24]

In this project, we use the turtlebot3 dqn packages which use the DQN models within
Keras and TF-Agents which are used for training a model, generation of Q-values,
and corresponding action that the Agent needs to take based on the output of the
network. It also exposes various files and classes that help us set various parameters and
hyperparameters that will be used in the training process, and will be discussed in the
following sections.

5 Implementation

To begin implementing the project, we were first required to understand the system ar-
chitecture and conceptualize the interactions between the various technologies involved.

14

5 Implementation 5.1 Installation process

The following figure presents the dataflow between various systems and the function-
alities of each component. Our main task would then be to actualize these functions
through the code setup, installation, and the use of various ROS2, Gazebo9, and Turtle-
bot3 packages.

Figure 5.1: System Diagram showing the dataflow and Interaction of various
components involved in this project

In this system, the simulation portrays a real-world environment. The turtlebot3
burger robot exists within a gazebo9 simulation. The simulation data is constantly be-
ing communicated between ROS2 (which acts as an Operating System) and the turtle-
bot3 dqn packages, which is the hub of all data and DQN processing. The simulation
data consists of mainly the State data for each time step, within the current episode.
This State data is utilized by various components that use the Tensorflow and Keras
libraries for various functions. The functions are performed by the DQN model and
the Reward Policy calculations are executed based on the Q-batch memory. The main
output from this system is the Action that the Turtlebot3 burger robot needs to take,
which is then accordingly relayed back to the ROS2 and gazebo9 platforms. The various
specifics of the Action, Reward, Batch, and State data will be discussed in the following
sections.

5.1 Installation process

The various components that are required, have now been laid out in the System di-
agram. Each of these technologies has to then be installed to start setting up the
simulation and the DQN model for training. The first step would be to set up the
ROS2 platform. For this, as mentioned in the previous chapter, we have chosen the
ROS2 Dashing Diademata version and have followed the installation steps for the De-
bian packages as mentioned in [26]

15

5 Implementation 5.2 Installation Obstacles

The next step is to install the gazebo9 simulation platform. For this, we first need
to follow the installation guidelines specified in [27]. However, we need to follow the
step-by-step guide as we need to interrupt the installation of gazebo11, as turtlebot3
still does not support stable versions of DQN in gazebo11 and instead install gazebo9
during the final stages of installation.

The next stage would be to follow the various steps of installation of turtlebot3 specific
packages mentioned in [23] as follows:

• The ROS2 dependency packages were first installed under the ROS2 setup page

• In the same page, the turtlebot3 packages were installed and the Bash commands
for Setup were saved

• The turtlebot3 burger model was brought up by following the instructions on the
ROS2 Bringup page. This was mainly to test whether the roslaunch functionality
was able to integrate ROS2, gazebo9, and turtlebot3 packages effectively.

• The turtlebot3 gazebo packages were installed following the steps mentioned in
the ROS2 Simulation page. We then launched various worlds that are provided in
these packages to check whether the packages function.

• The python 3.6 dependency packages were then installed following the instructions
on the ROS2 Machine Learning page

• The Tensorflow and Keras packages were then installed by following the instruc-
tions mentioned on the same page

• The turtlebot3, turtlebot3 msgs, and turtlebot3 simulations packages were then
installed following the links provided in the page

• The final step was to install the turtlebot3 machine learning packages following
the steps provided on the same page

5.2 Installation Obstacles

It must be noted that the Installation process did not go as smoothly as expected. Many
problems were encountered along the way. The following issues were noted:

• Although, one of the main advantages of using ROS2 is that it supports its use in
multiple OSs, we came across several issues with the setup on Windows and had to
revert to using Linux OS. Similar problems with OS compatibility were encountered
with the gazebo9 packages and the subsequent packages for turtlebot3 integration
of simulation and Machine Learning packages.

16

5 Implementation 5.3 DQN Algorithm

• We also noticed that the steps mentioned in the ’Installation process’ section above,
need to be meticulously followed in the same order. They were not mentioned in
any order in the documentation provided, therefore led to numerous issues with
the debugging process.

• A few packages that are installed for turtlebot3 does not support previously in-
stalled versions of Python 3.6 supported packages. Therefore a few packages needed
to be carefully reverted to the previous versions or excluded from the installation
process altogether.

• The turtlebot3 projects for Simulation, Tensorflow, Keras, and Machine Learning
packages directed us to the latest version of the code on the Git repositories.
However, we discovered issues with the package code after December 2019 and
had to revert each cloned code to the previous stable version accordingly.

• Finally to successfully install all packages and run the code, computers of relatively
high processing speeds were required. The installation process failed on all but one
laptop in our possession that had 16GB RAM, an Intel i7 8th gen processor, and
used SSDs for storage. If the installation did not carry forward, the same process
of installation had to be repeated in the same order from start to finish.

On overcoming the issues mentioned above, the code setup from then on for the DQN al-
gorithm was relatively easy. And the simulation worked without any during the training
process and while recording the results.

5.3 DQN Algorithm

Now that the installation and setup have been completed, the next step would be to
code the logic for the DQN algorithm. Here, several components are conceptualized to
split the various functionalities as given in the figure below:

Figure 5.2: Interaction of DQN Agent with other components within the DQN Logic

17

5 Implementation 5.3 DQN Algorithm

As seen in the figure, the DQN Agent is central to the Logic. It represents the turtle-
bot3 burger robot in the simulation. Here the DQN agent is expected to perform an
Action in the Environment, therefore the Action data needs to be set to relay the data to
the simulation. The action will then lead to a consequential State in the Environment.
Based on the current State, the reward needs to be calculated by the DQN Algorithm
and stored in the Replay Memory. Here next course of action is determined, and is
padded with the current state, the next state as well as the Reward and stored as a
Batch. Based on the sequence and various hyperparameters the next Batch will be se-
lected that will relay the next Action that needs to be taken by the DQN Agent in the
Environment. This cycle repeats for each time step within each episode. DQN algorithm
will thereby attempt to keep increasing the Cumulative Reward of the entire system.

5.3.1 Set State

A state is an observation of an environment and describes the current situation. In this
project, we have used LDS to obtain information about the current state. Here, the size
of the state is set to 26, out of which 24 values pertain to the LDS data, one for the
distance to the goal, and another for the angle to the goal. By default, the Turtlebot3’s
LDS value is set to 360. This can be changed in a xacro file in the turtlebot3 description
directory as shown below:

Figure 5.3: Information in the turtlebot3 burger description xacro file

In this project however, we have chosen the default LDS value as it could more accu-
rately relay information about obstacles around and in close proximity.

5.3.2 Set Goal

The goal is configured as a simple translucent object in the SDF file for each world. We
utilized a red shade, and a circle or square that appears within the bounds of the walls,
and does not coincide with the walls. For this project, we have used a simple random
generator as shown in the code below. A list of arbitrary goal positions is already set
based on the conditions stated concerning the obstacles. The indices are arbitrarily

18

5 Implementation 5.3 DQN Algorithm

generated for each episode based on which the x and y coordinates are chosen. The
choice of which position to select is randomly generated as a result.

Figure 5.4: Random goal position generator

5.3.3 Set Action

The DQN-Agent is now supposed to reach these randomly chosen goals. To do so, it
can choose between a set of five actions. Since it is initialized with a constant linear
velocity of 0.15 m/s, it can only change the angular velocity, which is in the beginning
0 (Action 2). Then it can choose between continuing with the present angular velocity
or changing it by a given value as can be seen in the following table:

Action Angular velocity (rad/s)
0 -1.5
1 -0.75
2 0
3 0.75
4 1.5

Table 5.1: Actions of the DQN-Agent

5.3.4 Reward Policy

The Reward policy is determined by 2 main factors. Firstly, the reward depends on the
current state of the turtlebot3 and the goal, i.e. the distance between the turtlebot3
and the goal which is given by the following formula:

rdistance =
2 · goaldistanceinit

goaldistanceinit + goaldistance
− 1,

19

and the angle between the current normal axis of turtlebot3’s Action and the goal
position, which is given by:

ryaw = 1− 2 ·
√
goalangle

π

The reward also depends on the distance between the turtlebot3 and the obstacle at any
given point, so as to discourage a collision, and is as given below:

robstacle =

{
−2, if obstacledistancemin < 0.25
0, else

Therefore, the total reward is calculated as follows:

rtotal = ryaw + rdistance + robstacle

A slight boost is additionally given depending on whether the episode ended in success
or failure, where an episode is successful if the robot reaches the goal and an episode
fails when the robot collides with an obstacle or the episode has timed out, and is as
given below:

rtotal =

{
if success rtotal + 5
else rtotal − 10

6 Training

The training process is what verifies the feasibility of this project. However, before we
start the training process, the learning process of the DQN algorithm needs to be opti-
mized. This has been accomplished by setting the Hyperparameters for the DQN files.
The name of each parameter and their significance is showcased below:

20

6 Training 6 Training

Figure 6.1: Hyper Parameters that need to be set for Learning optimization

These are the default values that are set in the turtlebot3 dqn packages and these are
the same values that we have used in this project to obtain the needed results. The pres-
ence of the epsilon value here suggests that the model is in fact epsilon greedy and will
set arbitrary Actions to avoid loopholes in the robot’s states and the training process.
The epsilon value ranges from 1 at the beginning of the training process and periodically
decreases over time based on the epsilon decay value. The least possible epsilon value is
seen as 0.05.

To begin the training we also need to set up the environment. Here we have chosen
the following two worlds:

21

Figure 6.2: World with 4 walls

It is to be noted that the walls are however considered as obstacles, the goals are
generated only within the walls and not generated on top of them.

Figure 6.3: World with 4 walls and 4 obstacles

The walls are considered as obstacles in addition to the 4 cylindrical obstacles enclosed
by the walls. The goals are generated only within the walls and should not coincide with
the walls. However, they may be generated on top of the cylindrical obstacles.

22

7 Results 7 Results

Now to start the training, we run the ROS2 launch file, then the file with the gazebo
dependencies, followed by the file with the environment interactions linked to the SDF
files, and finally the Agent file. Each of these files needs to be run on separate terminals.
Several code snippets were written within each file to record the output and generate the
log files simultaneously, to obtain the results. The training was also carried out using
one laptop with the capabilities mentioned in chapter 5.

7 Results

The results were observed in two phases. The first phase involved manual observations
during the training process to make sure that it was progressing as intended. The sec-
ond phase involved studying the log files more closely and observing patterns after the
training process has been completed. This was carried out to discover options that could
positively alter results, which would prompt variation in training methods.

As a result, it was observed that with both the worlds, the training began frantically,
with arbitrary choices of actions. And along the mid-way, the actions slowly began to
stabilize. This involved at least a minimal avoidance of obstacles, even if the goal was
not reached. This progressed to episodes where the avoidance of obstacles was at a
higher rate and the goal was being reached for multiple episodes consequentially. At
this stage, the training was stopped and the results were noted. A collection of obser-
vations have been plotted into graphs and have been mentioned in the following sections.

7.1 Results - World 1

The first criterion observed was the training time needed for the completion of each
episode, i.e., for them to end in either success, failure, or a timeout. As seen initially,
the episodes are short, usually due to frequent failures in the early stages.

From around episode 70 to around 130, the epsilon values are relatively high and the
Replay memory has already enabled the agent to avoid obstacles. Therefore at this
stage, the robot explores the most, resulting in increased episode times.

However, after around 140 episodes, the model has learned that the most effective
way to increase cumulative reward is to navigate directly to the target. It could also be
due to the increase in the number of successes at this stage. Further results, will exhibit
this pattern more clearly.

23

7 Results 7.1 Results - World 1

Figure 7.1: Training time per episode - World 1

The next 2 plots are more veritable than observations. The epsilon values as defined
in the hyperparameters, decrease from 1 to around 0.05. And the Replay memory in-
creases alongside the total number of episodes, as the model stores increasing amounts
of Batch information for processing.

Figure 7.2: Epsilon value in each episode - World 1

24

7 Results 7.1 Results - World 1

Figure 7.3: Memory used for each episode - World 1

The next plot shows how the Cumulative reward is increasingly negative at the start,
and converges to 0, indicating that the cumulative reward has switched to increasingly
positive and has effectively neutralized the negative results from the initial stages. Mean-
while, the epsilon value decreases, from 1.0 to 0.05 as expected. This shows that with
a higher epsilon value, the agent is expected to make a higher rate of arbitrary moves,
which in turn, adversely affects the cumulative reward.

Figure 7.4: Epsilon value and the corresponding cumulative reward - World 1

25

7 Results 7.2 Results - World 2

The next plot shows the cumulative reward stabilizing overtime against the episode
number. It also should be noted that at around 150 episodes the Model already shows
positive results, which have been confirmed by manual observations of the agent’s per-
formance at this stage.

At this point, the agent is already successfully navigating towards the goal without
any collisions or timeouts. Therefore successful results were observed repeatedly despite
a relatively low number of training episodes.

Figure 7.5: Epsilon value and the corresponding episode number - World 1

7.2 Results - World 2

The same approach was carried out for noting observations for the second world as well.
Again, as seen initially the episodes are short, usually due to immediate failures in the
early stages. From around episode 70 to around 230, the epsilon values are relatively
high and the Replay memory has already enabled avoiding obstacles.

Therefore at this stage, the robot explores the most, resulting in increased episode
times. However, after around 250 episodes, the model has learned that the most effective
way to increase cumulative reward is to navigate directly to the target. It could also be
due to the increase in the number of successes at this time.

Further results, will evidently shed some light to this pattern. Therefore we stopped
the training at around 280 to 300 episodes to manually observe and record results.

26

7 Results 7.2 Results - World 2

Figure 7.6: Training time per episode - World 2

Similar to the previous world, the next 2 plots are more veritable than observations.
The epsilon values as defined in the hyperparameters, decrease from 1 to around 0.05.
And the Replay memory increases with the number of episodes as the model learns more
and more Batch information to keep track of.

Figure 7.7: Epsilon value in each episode - World 2

27

7 Results 7.2 Results - World 2

Figure 7.8: Memory used for each episode - World 2

The next plot shows how the Cumulative reward is increasingly negative at the start,
and converges to 0, indicating that the cumulative reward has switched to increasingly
positive and neutralizes the negative results from the initial stages.

Figure 7.9: Epsilon value and the corresponding cumulative reward - World 2

However, in this world, we can see of slight fallback to old patterns as the epsilon
value drops (below 0.2). This also shows that with a high epsilon value, the agent
is expected to make a higher rate of arbitrary moves, which also adversely affects the
cumulative reward. But here observations suggest that a lower epsilon decay value could
help the performance improve gradually, but more efficiently. This also shows that with

28

7 Results 7.3 Difficulties

a high epsilon value, the agent is expected to make a higher rate of arbitrary moves,
which also adversely affects the cumulative reward. But here observations suggest that
a lower epsilon decay value could help the performance improve gradually, but more
efficiently. The next plot shows the cumulative reward stabilizing overtime against the
episode number. It also should be noted that at around 250 episodes the Model already
shows positive results, which have been confirmed by manual observations of the agent’s
performance at this stage.

Figure 7.10: Epsilon value and the corresponding episode number - World 2

At this point, the agent is already successfully navigating towards the goal without
any collisions or timeouts and is also able to navigate around the obstacles smoothly.
Therefore successful results were observed repeatedly despite a relatively low number of
training episodes.

In both cases, on making successful manual visual observations, it was noted that
the agent performed 10 consecutive steps without failures and therefore the training
was stopped and the results were plotted. Due to the epsilon greedy algorithm under
DQN, and the powerful turtlebot3 packages for Tensorflow, Keras, and the LDS data
utilization in the State memory, the results were obtained at a relatively low number of
episodes as previously thought to have been needed.

7.3 Difficulties

One of the main reasons that we were pushed to stop the training, is due to the failure
in extending the training beyond a stipulated number of episodes. This was either due
to processing limitations of the processor used for the project or lack of stable internet

29

7 Results 7.3 Difficulties

connectivity. Even if the training were to be stopped, a lot of the core logic needs
to be altered to continue the training seamlessly, from a model that was stored. This
would require modifying the epsilon and decay values, the number of steps in an episode,
perhaps even reduce the learning rate to compensate for lost batches, etc. The following
plots illustrate the issues faced more closely:

Figure 7.11: Drop in performance as training is interrupted/ Failure to retain relay
memory due to lack of library functions to save the batch buffer

Figure 7.12: Mapping of cumulative reward and epsilon value/ And then mapping the
epsilon value to the correct episode number to obtain the window for

results

Therefore by observing these limitations, the following method was used to obtain an
approximate episode number, where the performance is stable enough. The episode can

30

then be manually observed and the results can be recorded.

In addition to the two worlds mentioned above, an additional house world was used to
attempt the training process and obtain results. However, due to constraints in resources
and time, an extension of the ’set goal’ logic posed limitations. This would also require a
large number of training episodes which would be computationally heavy in comparison
to previous attempts made. However, the current model has been applied and tested
in the house world without a goal and programmed to avoid obstacles. And this has
shown promising results for future implementations of a similar model with extended
simulation capabilities.

8 Conclusion

The applications of DQN for Autonomous Navigation is quite varied and vast. However,
the latest platforms that are being developed to implement these methods are still in their
infancy. During this project, we have come across many obstacles and difficulties. Firstly,
during the installation and setup process, numerous issues in the ROS2, gazebo9, and
turtlebot3 packages were encountered, including limited version compatibility and the
lack of support for newer versions of gazebo including versions 10 and 11. Despite this,
once the code was set up, the project was carried out relatively smoothly. This was due
to the seamless integration of all turtlebot3 packages with ROS2, gazebo9, Tensorflow,
Keras, and the Machine learning libraries. The training showed significant efficiency
with good results at a relatively lower number of episodes. The Reward function was
recorded, stabilizing after 100 - 200 episodes. As the epsilon value decreases, the agent
needs decreasing amounts of time to reach the goal. Therefore, to optimize these results,
the project could be attempted with lower epsilon decay values, the minimum epsilon
value could be altered to preferably, a little higher, the Learning Rate could be varied,
and further results could be recorded. There are numerous ways to tweak just the DQN
algorithm alone, which gives us a glimpse of the extent to which other innumerable
algorithms can be modified to suit the demands of Autonomous Navigation.

9 Future Work

The future work envisaged for this project could invariably keep shifting, as increasingly
many technologies and Deep Reinforcement Learning models are developed, broadening
the scope of their applications in Autonomous Navigation. For example, even from a
logical standpoint, programmatic changes can be made in the Reward function, or as
previously stated, in the epsilon values to obtain varying results. Another opportunity

31

for work is to increase the current scope, by training the same model, for a much higher
number of episodes. This could be carried out by utilizing clusters and computers with
better processors for the overall training process within the simulation. Furthermore, the
simulation environment could also be extended to involve complex worlds as explored in
the previous chapters. However, the main requirement at this stage, for the technologies
utilized in this project, is to fix the compatibility issues that exist during the installation
and build steps, in packages used, and create an easy-to-launch setup.

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, The MIT
Press, 2014, 2015. [Online]. Available: https://web.stanford.edu/class/psych209/
Readings/SuttonBartoIPRLBook2ndEd.pdf

[2] Types of Machine Learning Out There, IDAP, 2019. [Online]. Available:
https://idapgroup.com/

[3] Introduction to RL and Deep Q Networks, TensorFlow, 2020. [Online]. Available:
https://www.tensorflow.org/agents/tutorials/0 intro rl

[4] The Fairly Accessible Guide to the DQN Algorithm, mc.ai, 2020. [Online]. Available:
https://mc.ai/the-fairly-accessible-guide-to-the-dqn-algorithm/

[5] A Hands-On Introduction to Deep Q-Learning using OpenAI Gym in Python,
Analytics Vidhya, 2019. [Online]. Available: https://www.analyticsvidhya.com/

[6] Reinforcement Learning Demystified: Markov Decision Processes, Towards Data
Science, 2018. [Online]. Available: https://towardsdatascience.com/

[7] F. S. Melo, Convergence of Q-learning: a simple proof, Institute for Systems and
Robotics, Instituto Superior Técnico, Lisboa, Portugal, 1997. [Online]. Available:
http://users.isr.ist.utl.pt/∼mtjspaan/readingGroup/ProofQlearning.pdf

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, Playing Atari with Deep Reinforcement Learning, DeepMind
Technologies, 2015. [Online]. Available: https://www.cs.toronto.edu/∼vmnih/
docs/dqn.pdf

[9] M. Yao, Breakthrough Research in Reinforcement Learning from
2019, TopBots, 2019. [Online]. Available: https://www.topbots.com/
top-ai-reinforcement-learning-research-papers-2019/

32

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://idapgroup.com/
https://www.tensorflow.org/agents/tutorials/0_intro_rl
https://mc.ai/the-fairly-accessible-guide-to-the-dqn-algorithm/
https://www.analyticsvidhya.com/
https://towardsdatascience.com/
http://users.isr.ist.utl.pt/~mtjspaan/readingGroup/ProofQlearning.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.topbots.com/top-ai-reinforcement-learning-research-papers-2019/
https://www.topbots.com/top-ai-reinforcement-learning-research-papers-2019/

Bibliography Bibliography

[10] D. K. Naik and R. Mammone, Meta-neural networks that learn by learning. In Neu-
ral Networks, IJCNN., International Joint Conference on, volume 1, pages 437–442.
IEEE, 1992.

[11] P. Mannion, J. Duggan, and E. Howley, An experimental review of reinforcement
learning algorithms for adaptive traffic signal control, Autonomic Road Transport
Support Systems, pages 47–66. Springer International Publishing, 2016.

[12] P. Mannion, K. Mason, S. Devlin, J. Duggan, and E. Howley, Multi-objective dy-
namic dispatch optimisation using multi-agent reinforcement learning, In Proceed-
ings of the 15th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pages 1345–1346, 2016.

[13] K. Mason, P. Mannion, J. Duggan, and E. Howley, Applying multi-agent rein-
forcement learning to watershed management, In Proceedings of the Adaptive and
Learning Agents workshop (at AAMAS 2016), 2016.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, and G. Ostrovski, Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

[15] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, and M. Lanctot, Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484–48,
2016.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, , and
D. Wierstra, Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971, 2015.

[17] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy
optimization, In International Conference on Machine Learning, pages 1889–1897,
2015.

[18] S. Levine, C. Finn, T. Darrell, and P. Abbeel, End-to-end training of deep visuo-
motor policies, The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[19] V. Talpaert, I. Sobh, B. R. Kiran, P. Mannion, S. Yogamani, A. El-Sallab, and
P. Perez, Exploring Applications of Deep Reinforcement Learning for Real-world
Autonomous Driving Systems, U2IS, ENSTA ParisTech, Palaiseau, France; AKKA
Technologies, Guyancourt, France; Valeo Egypt, Cairo; Galway-Mayo Institute of
Technology, Ireland; Valeo Vision Systems, Ireland; Valeo.ai, France, 2019.

[20] A. Kumar, Robot Operating System 2 (ROS 2): Introduction and Getting
Started, MakerPro, 2020. [Online]. Available: https://maker.pro/ros/tutorial/
robot-operating-system-2-ros-2-introduction-and-getting-started

33

https://maker.pro/ros/tutorial/robot-operating-system-2-ros-2-introduction-and-getting-started
https://maker.pro/ros/tutorial/robot-operating-system-2-ros-2-introduction-and-getting-started

[21] Why Gazebo?, Open Source Robotics Foundation, 2014. [Online]. Available:
http://gazebosim.org/

[22] SDFormat, Open Source Robotics Foundation, 2020. [Online]. Available:
http://sdformat.org/

[23] Turtlebot3, Robotis, 2020. [Online]. Available: https://emanual.robotis.com/

[24] A. Choudhury, Tensorflow vs. Keras: Which one should you choose?, Robotis,
2019. [Online]. Available: https://analyticsindiamag.com/

[25] Keras, Keras, 2020. [Online]. Available: https://keras.io/

[26] Installing ROS 2 via Debian Packages, Open Source Robotics Foundation,
2020. [Online]. Available: https://index.ros.org/doc/ros2/Installation/Dashing/
Linux-Install-Debians/

[27] Install Gazebo using Ubuntu packages, Open Source Robotics Foundation, 2014.
[Online]. Available: http://gazebosim.org/tutorials?tut=install ubuntu

http://gazebosim.org/
http://sdformat.org/
https://emanual.robotis.com/
https://analyticsindiamag.com/
https://keras.io/
https://index.ros.org/doc/ros2/Installation/Dashing/Linux-Install-Debians/
https://index.ros.org/doc/ros2/Installation/Dashing/Linux-Install-Debians/
http://gazebosim.org/tutorials?tut=install_ubuntu

	Introduction
	Reinforcement Learning
	Markov Decision Process
	Q Learning
	Deep Q-Networks

	Motivation
	Problem Definition and Scope
	Tech-stack
	ROS2
	Gazebo9
	Turtlebot3
	Tensorflow and Keras

	Implementation
	Installation process
	Installation Obstacles
	DQN Algorithm
	Set State
	Set Goal
	Set Action
	Reward Policy

	Training
	Results
	Results - World 1
	Results - World 2
	Difficulties

	Conclusion
	Future Work

