Exploring neural representations in deep neural
networks trained with local error signals

Fabian Bergmann, Georg Kruse Technical University of Berlin, Raphael Leuner Freie University of Berlin

Abstract—In the recent boom of Deep Learning, Backpropa-
gation of error has become the dominant method for optimizing
Deep Neural Networks and is the only optimization method that
is widely applied in the field. It has been argued however, that
the brain, which has initially inspired some of the development of
DNN:s, is biologically unable to optimize networks in such a global
way. Therefore, many training methods have been suggested, in
which a loss and the subsequent weight optimization is calculated
at the level of each individual layer. This raises the question, of
whether these networks learn representations in their layers with
similar properties to Backpropagation trained networks.

In this work, two of these local loss methods, the Prediction
Similarity loss and the Direct Difference Target Propagation loss
have been used to train simple convolutional neural networks and
these networks have been compared to their Backpropagation
trained counterparts in terms of accuracies and layer-wise data
representation.

Our results give some initial evidence towards the assumption
that the Prediction Similarity loss might be a training method
that is able to approximate Backpropagation both in terms of
performance as well as layer-wise data representations. Direct
Difference Target Propagation however did not perform well
with convolutional models and therefore no statements about its
similarity to Backpropagation can be made.

I. INTRODUCTION

URRENT Deep Neural Networks trained by the Back-
propagation algorithm were once thought to mimic layer-
wise learning in the brain, however more recent research indi-
cates that the brain is biologically not capable to propagate er-
ror information to a great extent back via the rules of calculus
[10]. Instead of propagating back error information from one
source through the whole network, alternative architectures are
proposed that employ multiple local-error signals, which is
potentially more similar to learning mechanisms found in the
brain. The question arises, whether the networks trained by
local-error methods learn how to extract information from the
input differently than conventional Backpropagation networks,
for example by exhibiting a differently structured progression
of the learned representations throughout the layers.
Local-error signals can be considered as heightened supervi-
sion for each layer that tries to enforce the desired optimization
with regard to the input it receives from the prior layer. There-
fore, the layers are forced to build upon the representation
of the previous layer. Networks trained by Backpropagation
in contrast take all parameters of the network at once into
account, and thus there is no regard towards the manner in
which the optimization goal is accomplished. However, should
Backpropagation nonetheless also exhibit sequential layer-
by-layer building of representations and therefore a similar
pattern of representations to locally trained networks, it could

indicate that Backpropagation might to a certain degree be
a sufficient surrogate learning method for more biologically
valid methods.

We choose two local-error algorithms that have displayed
to be capable of achieving satisfactory performance and are
not intractable to calculate for substantial network sizes. We
chose the Prediction Similarity Local Loss (PredSim) [16] ar-
chitecture where each layer possesses its own loss function and
optimizer and another trained with Direct Difference Target
Propagation (DDTP) [13]. The trained models are investigated
with methods that give insight on how the representations
of each layer behave. We look at the Intrinsic Dimension
(ID) of the representation at each layer and compare the
activations between layers with Representational Similarity
Analysis (RSA) and Centered Kernel Alignment (CKA).

II. RELATED WORK/BACKGROUND

Backpropagation is biologically unrealistic for several rea-
sons [20]: it requires weight symmetry in the forward and
backward passes, propagates an global error across the entire
network and adjusts all weights simultaneously. Nevertheless,
current deep convolutional networks are typically trained using
global Backpropagation.

Recent work tried to overcome these issues in order to
create a biologically more plausible alternative to standard
Backpropagation. An alternative represents Target Propagation
(TP), as it uses target activations instead of errors to update
the weights of each layer locally [11], [12]. TP also motivated
other lines of more brain-like algorithms like dendritic micro-
circuits [19]. Other approaches use local loss functions to
pre-train the hidden layers of networks resulting in better
performance [24]. Instead of layer-wise pre-training, several
recent approaches train the whole network using such layer
wise error terms [21], [22]. The synthetic gradient mechanism
introduced by Jaderberg et al. also uses local error signals in
each layer, which are only based on the layer’s activations and
the labels. [23].

A popular hypothesis for the success of DNN’s is their
ability to learn good data representations [18]. These repre-
sentations have therefore been subject to intensive research. A
popular metric to analyse such representations is RSA, which
originates form the field of neuroscience [3]. It measures the
correlation between layer-wise activations [2]. Other metrics to
analyse the similarity of layers and networks are CKA and [7]
Canonical Correlation Analysis (CCA) [17] and new methods
like the neuron activation subspace match model have been
developed for better investigation [18].

III. METHODS
A. Intrinsic Dimension (ID)

The ID refers to the minimal number of variables required
to represent a data set. It is an important geometric property
to characterize and analyze the data representations in neural
networks [4]. In order to evaluate the ID of data manifolds
in neural networks, in this work the TwoNN method [6] for
global ID estimation is used. This method can not only be
applied to curved and topologically complex data manifolds
but is also computationally efficient.

TwoNN leverages the insight, that the ratio of distances
between the first and the second nearest neighbour p; =
7‘52) / 7‘1(1) for a given data point ¢ (and under the assumption
that the probability density around each point is constant)
yields an explicit cumulative distribution function (cdf) F'(u;)
that depends on the ID d. Thus, with the following equation

log(1 — F(ps))
log(p1)

an estimate of the intrinsic dimension d can be recovered.

In order to generalize over all data points and to receive a
robust estimate, an empirical cdf F*"P(u) can be computed
by sorting the values of p; in an ascending order through a
permutation o, so that it can be defined as F"(u,(;)) =
2+ Then, using the insight from (1), the points given by the
coordinates

{(og((pi), —log(1 = F™(pi))) [i =1,.., N} (2)

are fitted on a plane with a straight regression line that passes
through the origin. The slope of the line gives the ID d.

The ID of convolutional layers in deep neural networks
has been widely analyzed and therefore is a good metric to
compare locally and globally trained CNN’s. In CNN’s trained
with global Backpropagation, the ID throughout the layers
shows a hunchback shape: At the input layers it increases
with each layer, reaches a maximum at the middle layers
and then continues to drop until it reaches its minimum at
the output layer. The work of A. Ansuini et. al [4] indicates
that the higher the maximum ID and the steeper the following
implosion of ID, the better the generality.

=d. (1)

B. Representational Similarity Analyses (RSA)

In the field of neuroscience many models to characterize
and analyze representations in biological neural networks have
been introduced. There, an activity pattern is referred to as a
“representation” and especially in neuroscientific research the
similarity of such representations is compared to gain insights
into the similarity of different biological neural networks.
This approach can be transferred to artificial neural networks
[3]. To evaluate the representational similarity of deep neural
networks:

1) In a first step the layer wise activations for the same
inputs are measured and normalized and the correla-
tion between these representations is calculated using
a correlation measure. In that manner the layer-wise
similarity can be calculated.

2) In a second step this similarity or dissimilarity is aggre-
gated in a representation dissimilarity matrix (RDM).

The RDM of RSA can offer an intuitive visual overview
of how strongly correlated each layer is with every other
and moreover whether general overall similarity patterns are
discernible. The resulting matrix is moreover symmetric and
zero on its diagonal. [2] Therefore, the lower the correlation
between the representations in the layers, the higher the
dissimilarity.

C. Centered Kernel Alignment (CKA)

Another method to measure the similarity is centered kernel
alignment. It shares some similarity with RSA, but in contrast,
CKA does not normalize the activations of the layers and
therefore results are expected to be more pronounced com-
pared to RSA.

Equation (3) relates dot products between examples to dot
products between features. The left hand side measures the
similarity between the features X and Y, while the right hand
side corresponds to the dot product between the inter-example
similarity matrices.

||XTY||% = <vec(XXT),vec(YYT)>F 3)

where (-, -} denotes the Frobenius inner product and || - || 7
the Frobenius norm. Let now K, ; = k(z;,z;) and L; ; =
I(yi,y;) be two linear kernels k(x,y) = l(z,y) = 2Ty. Now
the right hand side of equation 3 can be kernelized

(vee(XXT),vec(YYT))p — (vec(HKH),vec(HKH))
“4)
where H denotes the centering matrix. By normalizing
equation (4) we arrive at the expression known as centered
kernel alignment [7]:

(vec(HKH),vec(HKH))p
|HKH||p||HLH| F
Equation (5) can be used, similar to RSA, as a similarity
measure. The results of CKA can also be plotted in RDM’s
for better interpretation analog to RSA.

CKA(K,L) = (5)

IV. BIOLOGICAL LEARNING METHODS

We choose to investigate two variants of training neural
networks, where learning information is passed to each in-
dividual layer. They are potentially more akin to biological
learning processes in the brain than networks trained by global
Backpropagation.

A. Prediction Similarity Local Loss

Each layer of the network is trained individually via SGD
from its own dedicated loss function. For the last layer, the
standard cross-entropy loss is used. The remaining layers re-
ceive a weighted combination of cross-entropy and similarity-
matching loss. Given the input X = [z1,...,2,] of a layer
with parameters 6 the similarity-matching loss is given by:

min |S (NeuralNet (X;0)) — S(Y)||3 (6)

In the assistance neural network NeuralNet the input X
first passes through the original layer with parameters 6,
followed by further layers parametrized by 5. Thus, the sim-
ilarity matching loss intends to optimize over the parameters
of NeuralNet given by © = [01,02]. Usually 6 is just
composed of the parameters of a single layer. A self similarity
metric S indicates how similar each entry is from one another.
With euclidean distance as metric, similarity corresponds to
distance.

Therefore, the term S(Y'), where Y = [y1, ..., y,] are one-
hot encoded target values, represents the desired similarity that
data points mapped by NeuralNet should exhibit. As a result
Neural Network intends to find a representation where data
points of the same class are clustered together, while data
points from different classes lie apart from each other. In the
optimal case, the data points lie in clear cut clusters of their
respective classes.

The architecture is taken from [16] and a visual represen-
tation of it can be found in Figure 1.

Linear CrossEnfropy

e.9.:3,96,(3,3) Target

Similarity

<
Gonv. | | matching Loss

Fig. 1: Visual representation of the training of one layer using
the Prediction Similarity loss, based on [16]

B. Target Propagation

Target Propagation is built on the idea of reconstructing
targets for each individual layer using inverse functions. Based
on the concept of autoencoders, this optimizes the previous
layers towards the activations it should have had in order to
produce the correct output in the next layer [1][11]. Here,
we will use Direct Difference Target Propagation (DDTP)
proposed by [13] to train a network with independent losses
at each individual layer. The forward activations for a given
minibatch b are defined by

h" = f(n?) (7

where f; in our case is the i-th convolutional layer combined
with a relu activation function. In contrast to Vanilla Target
Propagation, in DDTP the targets are not propagated back-
wards layer by layer; instead the output targets

7 LOL(hy,y)
R — p0) f) (8)
L L on®

are directly propagated to every previous layer. Here, L is
the cross entropy loss between the last activations and the
targets.

This calculation to create the local targets h; is done
with direct linear mappings g; using the “difference target

propagation” formula proposed by [12] in order to increase
stability.

WY = (b)) + b = g:(h)) ©)

The convolutional layers f; are optimized by gradient de-
scent using the mean squared error £; between activations and
targets

_ 1 B(®) _)2
Ei—ggjl\hi —hy |3 (10)

A visual representation of the training can be found in
Figure 2

| 3,96,(3.3) }<—'7 MSE
| T Linear/Layer
h > target
¥
| 192,10,(1, 1) ‘
¥ A
Updated
MSE —| Activations/Oufput
targets
r

Fig. 2: Visual representation of the training of one layer in the
DDTP network

1) Train Feedback Layers: To train the feedback mappings
g; for each layer but the last, the activities are being corrupted
by adding Gaussian noise

ﬁgb) = hz(.b) + o6 € € N(0,1) (11)

These corrupted activities are then passed forward through
the following layers creating separate corrupted final output
activities for every output layer

(b 7 (b
= filhy (12)

The corrupted output activities are then propagated back-

wards using the feedback layers (reconstruction)

hre® = g, (B 4+ B — gy (ni) (13)

The feedback layers g; are then optimized by gradient
descent using the mean squared error E;hf f:ree petween cor-
rupted activities and reconstructed corrupted activities

dif f,rec 1 7 (rec(db 7(b
cftthree = 37T =PI ag)
b

V. EXPERIMENTS

In our experiments we tried to improve comparability by
using an abbreviation of the straightforward, but nonetheless
adequately performing, ”All Convolutional Neural Network”
(AIICNN-C) architecture [15]. Furthermore, we trained and
tested the algorithms on the sufficiently complex CIFAR-10
image classification benchmark dataset [14].

A. AIlICNN-C architecture

The AIICNN-C architecture was chosen because it consists
only of convolutional layers, apart from a single average pool-
ing layer at the end. Furthermore, we removed the dropouts
to reduce the types of layers to a minimum while still
yielding comparable performance. This also makes it relatively
inexpensive to train with all three methods. The properties of
its nine convolutional layers are described in table 1. Every
convolutional layer is followed by a relu activation, the last
layer by a softmax activation.

For the model trained with DDTP, a shortened architecture
made out of only four convolutional layers was chosen, as this
showed a slightly higher accuracy and much faster training.

A Visualization of both architectures can be found in the
Appendix figures 8 and 9

AIICNN-C
3 x 3 conv. 96, stride 1
3 x 3 conv. 96, stride 1
3 x 3 conv. 96, stride 2
3 x 3 conv. 192, stride 1
3 x 3 conv. 192, stride 1
3 x 3 conv. 192, stride 2
3 x 3 conv. 192, stride 1
1 x 1 conv. 192, stride 1
1 x 1 conv. 10, stride 1
global averaging

shortAIICNN-C
5 x 5 conv. 32, stride 2)

5 x 5 conv. 64, stride 2)

8 x 8 conv. 64, stride 2)

1 x 1 conv. 10, stride 1)
global averaging

TABLE I: Architectures of AIICNN-C and shortened AIICNN-
C network, based on [15]

B. Training of the PredSim Local Loss Network

The PredSim Local-Loss Network was trained at every layer
with an Adam optimizer and a learning rate of 0.0005. The
comparable conventional backprop network was also trained
with an Adam optimizer and the same learning rate. Both were
trained for 50 epochs. These hyperparameters were chosen,
as they yielded satisfactory performance for both networks.
The networks where trained three times with different seeds.
The PredSim Local Loss Network achieved an average test
set accuracy of 0.83% while the Backpropagation network
reached 0.82%.

C. Training of the DDTP Network

The shorter network architecture with increased kernel sizes
compared to the standard AIICNN-C architecture was chosen
as this showed a faster conversion rate and reached higher
ac-curacies on the CIFAR-10 dataset. Both the DDTP trained
network and the network trained with Backpropagation of error
shared the same layer-wise architecture as well as the same

hyperparameters. They were trained using an Adam optimizer
with a learning rate of 0.001, with a batchsize of 128. The
learning rate of the linear feedback layers was 0.005, the
feedback layers were trained after each epoch. Three networks
with different seeds were trained for 100 epochs and the
results were averaged over these three runs for each training
method. Despite the superior performance of the shortened
network compared to the original AIICNN-C architecture, the
DDTP loss function did not show a great performance with
an average accuracy of 0.52%, compared to 0.71% for the
Backpropagation trained network.

D. Results

The comparison of the ID in Figure 3 shows that the
AIICNN-C trained with global Backpropagation and the Pred-
Sim loss AIICNN-C show a similar development of ID and
both show the so called “hunchback-shape” as described
previously. This indicates that both methods to a certain degree
might have learnt a representation sequence of similar quality
and therefore might generalize over the data in a similar
manner.

Nonetheless, some subtle differences are observable. First,
the PredSim loss network reaches a higher maximum followed
by a steeper drop compared to the conventional Backpropa-
gation network. Second, the globally trained network shows a
bump before the last layer. The experiments are however not
substantial enough to draw any strong conclusions from these
results.

The shape of the ID curve of the short AIICNN-C network
trained with global Backpropagation and DDTP do not com-
pletely show the expected “hunchback-shape”. However, since
the networks are very shallow, it can be argued that the shape
seen in Figure 3 are a version of the expected shape, especially
when it comes to the decrease of intrinsic dimensions towards
the end of the network. Here, both training architectures show
a remarkable similarity.

Intrinsic Dimension of Network Layers

Dimension
w
8

10 Full Backprop (A1)
Prediction & Similarity Local Loss (B)

—— Full Backprop Short (A2)
Target Propagation Short (C)

Fig. 3: Intrinsic dimensions with 95% confidence interval
comparing locally trained networks with Backpropagation
trained networks. Left: PredSim loss on original AIICNNC;
Right: DDTP loss on shortened AICNNC

The RSA and CKA matrices between Backpropagation and
PredSim loss networks in figure 4 and 5 show a similar pattern
of similarity of the individual networks respectively. Both
individual networks show the traditional network structure,
where neighbouring layers are the most similar to one an-
other. This similarity decreases along the off-diagonal with

RSA of layers
Full Backprop (Al) - Prediction & Similarity Local Loss (B)

-12

-1.0

Fig. 4: Representational Dissimilarity Matrix from RSA cal-
culation between backprobagation (A1) and PredSim (B) loss

CKA of layers:
Full Backprop (A1) - Prediction & Similarity Local Loss (B)

-12

-1.0

Fig. 5: Representational Dissimilarity Matrix from CKA cal-
culation between Backpropagation (A1) and PredSim (B) loss

further distant layers. This indicates, that the representations
in the layers build on one another in both cases, locally
trained networks as well as networks trained with global
Backpropagation. Thus, this also indicates that the nature
of the learned data representations does not differ greatly
between the networks. Both training algorithms seem to learn
layer wise data representations which build upon each other,
hinting towards similar learned structure in the sequence of
representations.

When compared to the other network respectively, a strong
correlation between the input and output layers can be seen
in the RSA and the CKA matrix. This is due to the fact that
both networks are trained with the same dataset as input and
both reach high classification accuracies. Therefore, the data
representations in the input and the output are quite similar.
While the RSA matrix shows only a vague slightly shifted
correlation trend on the diagonal between the anchor points of
the input and output layers, the CKA matrix on the other hand

displays a more pronounced diagonal. The difference between
the RSA and the CKA matrix could be due to the fact that
the in the CKA analysis no normalisation along the axes is
performed. Due to this limitation of RSA, the results of the
CKA matrix are taken into stronger consideration. The height-
ened correlation on the diagonal, although slightly shifted,
indicates similar learned representation between layers that lie
at similar positions in the networks. Suggesting again some
similar structure in the sequence of learned representations.
The diagonal fades out towards the middle, this is though
to be expected since the degrees of freedoms for possible
representations accumulate in the middle of the networks. The
reason for the offset on the diagonal can only be hypothesized
about (maybe similar representations are learned later for one
of the networks).

Both the RSA as well as the CKA matrices between
Backpropagation and DDTP networks (figure 6 and 7 re-
spectively) show a constantly decreasing correlation on the
diagonal between the layers of the networks. The dissimi-
larity remains highest at the very last layer, where in well
performing networks a similar representation between the two
final layers would be expected irrespectively of the prior data
representation, since both networks have been trained on the
same dataset. The low correlation between the DDTP and the
Backpropagation trained network is in line with the previously
described lower performance of the DDTP trained network
compared to the Backpropagation network. This low perfor-
mance makes it difficult to produce meaningful conclusions
from the comparison of these two methods.

RSA of layers
Full Backprop Short (A2) - Target Propagation Short (C)

(AZ)C1

(A2) C 2 12

(a2)C3 10
(A2)C4-
(A2) Pool -
cc1
ccez
©cs3

(C)c4-

(C) Pool -
T T | 0.0
s ™~ m < J5 A ™~ ™ =T 5
O A
§ 838939000 g

Fig. 6: Representational Dissimilarity Matrix from RSA cal-
culation between Backpropagation (A2) and DDTP (C) loss

VI. DISCUSSION

The experiments revealed that the structure in the sequence
of representations between Backpropagation networks and
local loss networks might possess similarities. However, some
subtle differences especially for the PredSim network are
discernible like a different “hunchback-shape” for the ID (fig.
3) or an offset of the correlation diagonal in the CKA plot 5.

CKA of layers:
Full Backprop Short (A2) - Target Propagation Short (C)

(Az)c1

(a2) 2 -2

(A2)C3 -10

(A2)C 4 -

(A2) Pool -

cyci 0.6
(cycz

0.4
c)cs
(C)c4- 0.2
(C) Pool =

0.0

(c)cz-
(C)C3-
(C) Pool

-
¢
g

(A2)C1-
(A2)C2-
(A2)C3-
(A2)C4-
{A2) Pool -

(C)cl-

Fig. 7: Representational Dissimilarity Matrix from CKA cal-
culation between Backpropagation (A2) and DDTP (C) loss

These should be investigated further by first of all substantiat-
ing the results with more runs that include different network
architectures and data sets and then maybe adding metrics that
evaluate the representations of the networks at a more fine
grained scale, evaluate different geometric properties, etc.

Overall, the experiments are not extensive enough to draw
any final conclusions, in particular for the DDTP network.
They merely offer arguments for a substantial degree of
similarity between Backpropagation and more biological local
loss networks. Moreover, the results should be understood as
pointers towards possible future work that could enhance our
understanding on how comparable biological networks are to
Backpropagation networks, and even on how artificial neural
networks learn in general.

Furthermore, many other architectures exist that are thought
to also be more biologically valid than Backpropagation. These
other biological architectures should therefore also be investi-
gated and might reveal a stronger divergence in their learned
representations than the local loss networks. Or a common
similarity can be deduced that might reveal something about
learning representations in general.

A. Challenges of the DDTP Network

The training of an all convolutional DDTP Network proved
to be quite difficult and in our view did not reach a sufficient
performance to get meaningful insights for either the CKA or
ID analysis. The small correlations between the output layers
of the Backpropagation and DDTP trained networks in both
CKA and RSA support that. In its current implementation,
DDTP does not seem to be a well suited method to train
extensive convolutional neural networks.

The reasons of why DDTP does not perform well with only
convolutional layers remains to be analyzed further. While the
original paper [13] did briefly discuss results for convolutional
networks, in the original architectures the convolutional layers
were always followed by at least two dense layers. Due
to that architectural difference, the performances reached in

their analysis can not be carried over to the all convolutional
architectures we used in our work.

VII. CONCLUSION

In this paper, networks trained with global Backpropaga-
tion were compared to locally trained networks in terms of
representational similarity and intrinsic dimensions of layer
activations. This work was inspired by the bigger question
of whether the brain could be able to learn representations
that are structurally similar to the ones learned by biologically
illogical Backpropagation algorithms. We chose to investigate
the PredSim and DDTP architectures that are supposedly more
biologically valid because of their optimization choices at the
local level.

However, the (DDTP) did not perform sufficiently well on
the CIFAR-10 dataset to make any meaningful statements
about its similarity or difference to Backpropagation. Our im-
plementation attempts suggest that in its current form it might
not be a well suited loss architecture for all convolutional
neural networks.

For the PredSim architecture, our experiments have shown
that there is initial evidence for it to create similarly behaving
networks on the level of individual layers, both for the analysis
of intrinsic dimensions and the representational similarity loss.
Also the networks’ overall behaviours are similar, as the local
loss architecture did perform on a comparably well level to
the same network trained with Backpropagation of error. This
suggests that a network that optimizes each layer individually
in order to create optimal classification predictions as well as
being a good representation of the similarity between targets,
could be one way of attaining similar learned representation
results as Backpropagation networks without actually back-
propagating errors across several layers.

Since these initial findings are only based on one AIICNN-
C network architecture and a single data set, further and
more extensive experiments are necessary to strength the
evidence. Without improvements, it is probably not warranted
to further analyze DDTP loss networks; but there are numerous
other local error implementations that could be compared to
Backpropagation and that could be ranked based on their
ability to approximate Backpropagation in future work.

REFERENCES

[1] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G. Hinton,
“Backpropagation and the brain,” Nature Reviews Neuroscience, vol. 21,
no. 6, Art. no. 6, Jun. 2020, doi: 10.1038/s41583-020-0277-3.

[2] N. Kriegeskorte, M. Mur, and P. Bandettini, “Representational Similarity
Analysis — Connecting the Branches of Systems Neuroscience,” Front
Syst Neurosci, vol. 2, Nov. 2008, doi: 10.3389/neuro.06.004.2008.

[3] Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W.,
Kriegeskorte, N. (2014). A toolbox for representational similarity analy-
sis. PLoS computational biology, 10(4), e1003553.

[4] A. Ansuini, A. Laio, J. H. Macke, and D. Zoccolan, “Intrinsic dimension
of data representations in deep neural networks,” in Advances in neural
information processing systems, 2019, vol. 32

[5] V. Erba, M. Gherardi, and P. Rotondo, “Intrinsic dimension estimation
for locally undersampled data,” Scientific Reports, vol. 9, no. 1, Art. no.
1, Nov. 2019, doi: 10.1038/s41598-019-53549-9.

[6] E. Facco, M. d’Errico, A. Rodriguez, and A. Laio, “Estimating the
intrinsic dimension ofdatasets by a minimal neighborhood informa-
tion,”Scientific reports, vol. 7, no. 1, p. 12140,2017.

[7] Kornblith, S., Norouzi, M., Lee, H., Hinton, G. (2019, May). Similarity
of neural network representations revisited. In International Conference
on Machine Learning (pp. 3519-3529). PMLR.

[8] L. Ardizzone, J. Kruse, C. Rother, and U. Kothe, “Analyzing Inverse
Problems with Invertible Neural Networks,” presented at the International
Conference on Learning Representations, Sep. 2018, Accessed: Mar. 05,
2021. [Online]. Available: https://openreview.net/forum?id=rJed6j0cKX.

[9] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real
NVP,” arXiv:1605.08803 [cs, stat], Feb. 2017, Accessed: Mar. 05, 2021.
[Online]. Available: http://arxiv.org/abs/1605.08803.

Cortes, C., Mohri, M., and Rostamizadeh, A. Algorithms for learning ker-
nels based on centered alignment.Journalof Machine Learning Research,
13(Mar):795-828, 2012

[10] Bengio, Y., Lee, D. H., Bornschein, J., Mesnard, T., Lin, Z.
(2015). Towards biologically plausible deep learning. arXiv preprint
arXiv:1502.04156.

[11] Bengio, Y. (2014). How Auto-Encoders Could Provide Credit As-
signment in Deep Networks via Target Propagation. arXiv preprint
arXiv:1407.7906

[12] Lee, D., Zhang, S., Fischer, A., Bengio, Y. (2015). Difference Target
Propagation. ECML/PKDD.

[13] Meulemans, A., Carzaniga, F.S., Suykens, J., Sacramento, J., Grewe,
B.F. (2020). A Theoretical Framework for Target Propagation. arXiv
preprint arXiv:2006.14331.

[14] Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny
Images.

[15] Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A. (2015).
Striving for Simplicity: The All Convolutional Net. CoRR, abs/1412.6806.

[16] Ngkland, Arild, and Lars Hiller Eidnes. “Training neural networks
with local error signals.” International Conference on Machine Learning.
PMLR, 2019.

[17] Morcos, Ari S., Maithra Raghu, and Samy Bengio. “Insights on rep-
resentational similarity in neural networks with canonical correlation.”
arXiv preprint arXiv:1806.05759 (2018).

[18] Wang, Liwei, et al. "Towards understanding learning representations: To
what extent do different neural networks learn the same representation.”
arXiv preprint arXiv:1810.11750 (2018).

[19] Guerguiev, Jordan, Timothy P. Lillicrap, and Blake A. Richards. ”To-
wards deep learning with segregated dendrites.” Elife 6 (2017): €22901.

[20] Mostafa, Hesham, Vishwajith Ramesh, and Gert Cauwenberghs. "Deep
supervised learning using local errors.” Frontiers in neuroscience 12
(2018): 608.

[21] Zhao, Junbo, et al. ”Stacked what-where auto-encoders.” arXiv preprint
arXiv:1506.02351 (2015).

[22] Zhang, Yuting, Kibok Lee, and Honglak Lee. ”"Augmenting supervised
neural networks with unsupervised objectives for large-scale image clas-
sification.” International conference on machine learning. PMLR, 2016.

[23] Jaderberg, Max, et al. "Decoupled neural interfaces using synthetic
gradients.” International Conference on Machine Learning. PMLR, 2017.

[24] Dong, Xuanyi, et al. ”Supervision-by-registration: An unsupervised ap-
proach to improve the precision of facial landmark detectors.” Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2018.

APPENDIX A
ARCHITECTURE OF ACNNC NETWORKS

| 3,96,(3,3)
. = J
| 96, 96, (3, 3)

| 96, 96, (3, 3), stride 2

" s

I

| 96, 192, (3, 3)

. x J
| 192,192, (3,3)
\ x J

| 192,192, (3, 3), stride 2

L)
192,192 (3, 3),

L —
| 192,192, (1, 1)
oyt
| 192,10, (1, 1)

" s

LT

CrossEntropy

Fig. 8: AIICNNC ar-
chitecture, used for
comparison between
Backpropagation and
Local Error Signal
trained networks

‘ 3,32, (5,5), stride 2 ‘
‘ 32,64, (5,5), stride 2 ‘
‘ 64, 64, (8,8) ‘
‘ 64,10, (1, 1) ‘

CrossEntropy

Fig. 9: Shortened
AIICNNC
architecture, used for
comparison between
Backpropagation
and DDTP trained
networks

